
TestStand TM

Reference Manual

TestStand Reference Manual

July 2003 Edition
Part Number 323435A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530,
China 86 21 6555 7838, Czech Republic 420 2 2423 5774, Denmark 45 45 76 26 00,
Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427,
India 91 80 51190000, Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970,
Korea 82 02 3451 3400, Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 1800 300 800, Norway 47 0 66 90 76 60, Poland 48 0 22 3390 150, Portugal 351 210 311 210,
Russia 7 095 238 7139, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2003 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, IVI™, LabVIEW™, Measurement Studio™, National Instruments™, NI™, NI Developer Zone™, ni.com™, and TestStand™ are trademarks
of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v TestStand Reference Manual

Contents

About This Manual
Conventions ...xv

Chapter 1
TestStand Architecture

General Test Executive Concepts ..1-1
Major Software Components of TestStand..1-2

TestStand Sequence Editor..1-2
TestStand Operator Interfaces ...1-3
TestStand User Interface Controls...1-3
TestStand Engine...1-3
Module Adapters ...1-4

TestStand Building Blocks ..1-5
Variables and Properties..1-5

Expressions ...1-5
Categories of Properties ..1-6

Steps ..1-8
Step Types...1-8

Sequences ..1-9
Step Groups...1-9
Sequence Local Variables ...1-9
Sequence Parameters...1-10
Built-in Sequence Properties...1-10

Sequence Files ...1-10
Process Models..1-11

Station Model ..1-11
Main Sequence and Client Sequence File...1-12
Entry Points...1-12

Automatic Result Collection ...1-12
Callback Sequences ...1-13
Sequence Executions ...1-14

Contents

TestStand Reference Manual vi ni.com

Chapter 2
Sequence Files and Workspaces

Sequence Files ... 2-1
Types of Sequence Files ... 2-1
Sequence File Callbacks ... 2-2
Sequence File Globals... 2-2
Sequence File Type Definitions .. 2-2
Comparing and Merging Sequence Files .. 2-2

Sequences .. 2-3
Step Groups... 2-3
Parameters ... 2-3
Local Variables ... 2-3

Sequence File Window and Views.. 2-4
Workspaces.. 2-5

Source Code Control ... 2-5
System Deployment .. 2-5

Chapter 3
Executions

What is an Execution? ... 3-1
Sequence Context .. 3-2

Using the Sequence Context ... 3-2
Lifetime of Local Variables, Parameters,

and Custom Step Properties... 3-3
Sequence Editor Execution Window .. 3-3

Starting an Execution .. 3-4
Execution Entry Points.. 3-4
Executing a Sequence Directly ... 3-4
Interactively Executing Steps.. 3-5
Terminating and Aborting Executions .. 3-5

Result Collection ... 3-6
Custom Result Properties.. 3-7
Standard Result Properties .. 3-9
Subsequence Results ... 3-10
Loop Results ... 3-11
Report Generation ... 3-12

Engine Callbacks ... 3-12
Step Execution... 3-12
Step Status ... 3-14

Failures.. 3-15
Run-Time Errors.. 3-16

Contents

© National Instruments Corporation vii TestStand Reference Manual

Chapter 4
Built-In Step Types

Overview..4-1
Using Step Types...4-1

Built-In Step Properties...4-3
Custom Properties That Are Common to All Built-In Step Types4-4
Step Status, Error Occurred Flag, and Run-Time Errors.................................4-5

Step Types That You Can Use with Any Module Adapter ...4-6
Action ..4-7
Pass/Fail Test...4-7
Numeric Limit Test ...4-8
Multiple Numeric Limit Test...4-10
String Value Test ...4-11

Step Types That Work With a Specific Module Adapter ..4-13
Sequence Call ..4-13

Step Types That Do Not Use Module Adapters ..4-14
Statement ...4-14
Label ..4-15
Goto ...4-15
Message Popup..4-15
Call Executable..4-17
Property Loader ...4-18

Chapter 5
Module Adapters

Overview..5-1
Configuring Adapters ..5-1
Source Code Templates...5-2

LabVIEW Adapter ...5-2
LabWindows/CVI Adapter ..5-2
C/C++ DLL Adapter ..5-2

Specifying a C/C++ DLL Adapter Module ...5-3
Debugging DLLs ...5-3

Debugging LabVIEW DLLs You Call with the C/C++ DLL Adapter5-4
Using MFC in a DLL ..5-4
Loading Subordinate DLLs ...5-5
Creating Type Libraries...5-5

.NET Adapter...5-5
Debugging .NET Assemblies ..5-6
Configuring the .NET Adapter ..5-7
Numeric Parameters ..5-7
Enumeration Parameters..5-7

Contents

TestStand Reference Manual viii ni.com

Struct Parameters .. 5-7
Array Parameters... 5-8

ActiveX/COM Adapter ... 5-8
Running and Debugging ActiveX Automation Servers.................................. 5-8
Configuring the ActiveX/COM Adapter... 5-9
Using ActiveX/COM Servers with TestStand .. 5-9

Registering and Unregistering a Server.. 5-9
Compatibility Options for Visual Basic ... 5-9

HTBasic Adapter ... 5-12
Specifying an HTBasic Adapter Module .. 5-12
Debugging an HTBasic Adapter Module.. 5-12
Passing Data To and Returning Data From a Subroutine 5-12

Sequence Adapter .. 5-13
Specifying a Sequence Adapter Module... 5-14

Remote Sequence Execution .. 5-14
Setting up TestStand as a Server for Remote Execution 5-15

Windows XP... 5-16
Windows 2000/NT ... 5-17
Windows 98.. 5-18

Chapter 6
Database Logging and Report Generation

Database Concepts... 6-1
Databases and Tables .. 6-1
Database Sessions ... 6-2
Microsoft ADO, OLE DB, and ODBC Database Technologies..................... 6-3
Data Links ... 6-5
Database Logging Implementation ... 6-6

Using Database Logging ... 6-7
Logging Property in the Sequence Context .. 6-8

TestStand Database Result Tables... 6-9
Default TestStand Table Schema.. 6-9
Creating the Default Result Tables ... 6-10
Adding Support for Other Database Management Systems 6-10
Database Viewer ... 6-12
On-The-Fly Database Logging ... 6-12

Using Data Links... 6-13
Using the ODBC Administrator.. 6-13
Example Data Link and Result Table Setup for Microsoft Access 6-13

Database Options—Specifying a Data Link and Schema 6-14
Database Viewer—Creating Result Tables 6-14

Implementation of the Test Report Capability .. 6-15

Contents

© National Instruments Corporation ix TestStand Reference Manual

Using Test Reports...6-16
Failure Chain in Reports..6-19
Batch Reports ..6-19
Property Flags that Affect Reports ..6-20
On-The-Fly Report Generation ...6-20
XML Report Schema...6-21

Chapter 7
User Management

Verifying User Privileges ..7-1
Accessing Privilege Settings for the Current User ..7-1
Accessing Privilege Settings for Any User ...7-2

Chapter 8
Customizing and Configuring TestStand

Customizing TestStand ..8-1
Operator Interfaces ..8-1
Process Models..8-1
Callbacks ...8-2
Data Types...8-2
Step Types ...8-2
Tools Menu..8-2
TestStand Directory Structure ...8-3

NI and User Subdirectories ...8-4
The Components Directory...8-4

Creating String Resource Files..8-6
Resource String File Format ...8-7

Configuring TestStand ...8-8
Sequence Editor and Operator Interface Startup Options8-8
Configure Menu...8-10

Chapter 9
Creating Custom Operator Interfaces

Example Operator Interfaces ...9-2
TestStand User Interface Controls ...9-2
Deploying an Operator Interface ...9-3
Writing an Application with the TestStand UI Controls ...9-3

Manager Controls ..9-3
Application Manager...9-3
SequenceFileView Manager ...9-4
ExecutionView Manager...9-4

Contents

TestStand Reference Manual x ni.com

Visible TestStand UI Controls .. 9-5
Connecting Manager Controls to Visible Controls... 9-7
View Connections ... 9-7
List Connections ... 9-8
Command Connections ... 9-9
Information Source Connections .. 9-10

Caption Connections... 9-10
Image Connections ... 9-11
Numeric Value Connections... 9-12

Specifying and Changing Control Connections.. 9-12
Using TestStand UI Controls in Different Environments ... 9-13

LabVIEW .. 9-13
LabWindows/CVI ... 9-13
Visual Studio .NET ... 9-14
Visual C++ .. 9-14

Handling Events .. 9-15
Creating Event Handlers In Your ADE .. 9-15
Events Handled By Typical Applications ... 9-15

ExitApplication... 9-16
Wait .. 9-16
ReportError ... 9-16
DisplaySequenceFile .. 9-16
DisplayExecution.. 9-17

Startup and Shut Down.. 9-17
TestStand Utility Functions Library.. 9-18
Menus and Menu Items ... 9-20

Updating Menus .. 9-21
Localization ... 9-22
Operator Interface Application Styles ... 9-23

Single Window.. 9-23
Multiple Windows... 9-24
No Visible Window .. 9-26

Command-Line Arguments ... 9-26
Persistence of Application Settings ... 9-27

Configuration File Location.. 9-27
Adding Custom Application Settings ... 9-27

Using the TestStand API With TestStand UI Controls ... 9-28

Contents

© National Instruments Corporation xi TestStand Reference Manual

Chapter 10
Customizing Process Models and Callbacks

Process Models ..10-1
Station Model ..10-2
Specifying a Specific Process Model for a Sequence File10-2
Modifying the Process Model ...10-2
Process Model Callbacks...10-3

Callbacks..10-6
Engine Callbacks ...10-6
Front-End Callbacks..10-10

Chapter 11
Type Concepts

Creating and Modifying Types ..11-1
Where You Create and Modify Types...11-1

Storing Types in Files and Memory ..11-4
Type Palette Window...11-4

Chapter 12
Standard and Custom Data Types

Using Data Types...12-1
Specifying Array Sizes ..12-4

Empty Arrays ..12-4
Display of Data Types ...12-5
Modifying Data Types and Values..12-6

Single Values ..12-7
Arrays..12-8

Using the Standard Named Data Types...12-8
Path..12-9
Error and Common Results...12-9

Creating and Modifying Custom Data Types ..12-10
Creating a New Custom Data Type...12-10
Customizing Built-In Data Types..12-11
Properties Common to All Data Types ...12-11

General Tab...12-11
Bounds Tab ...12-12
Version Tab...12-12
Cluster Passing Tab...12-12
C/C++ Struct Passing Tab...12-12
.NET Struct Passing Tab...12-12

Custom Properties of Data Types..12-13

Contents

TestStand Reference Manual xii ni.com

Chapter 13
Creating Custom Step Types

Creating and Modifying Custom Step Types .. 13-1
Creating a New Custom Step Type... 13-2
Customizing Built-In Step Types.. 13-2
Properties Common to All Step Types ... 13-3

General Tab .. 13-4
Menu Tab.. 13-4
Substeps Tab... 13-4
Disable Properties Tab.. 13-6
Code Templates Tab ... 13-6
Version Tab .. 13-9

Custom Properties of Step Types.. 13-10

Chapter 14
Deploying TestStand Systems

TestStand System Components ... 14-1
TestStand Deployment Utility ... 14-1

Setting Up the TestStand Deployment Utility .. 14-2
Identifying Components for Deployment... 14-2
Determining Whether to Create an Installer

With the TestStand Deployment Utility .. 14-2
Creating a System Workspace File... 14-3
Configuring and Building the Deployment 14-3

Using the TestStand Deployment Utility .. 14-3
File Collection... 14-3
VI Processing .. 14-4
Sequence File Processing.. 14-5

Guidelines for Successful Deployment ... 14-5
Common Deployment Scenarios... 14-6

Deploying the TestStand Engine... 14-6
Distributing Tests From a Workspace .. 14-7
Adding Dynamically Called Files to a Workspace... 14-8
Distributing an Operator Interface .. 14-10

Appendix A
Process Model Architecture

Appendix B
Synchronization Step Types

Contents

© National Instruments Corporation xiii TestStand Reference Manual

Appendix C
IVI Step Types

Appendix D
Database Step Types

Appendix E
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation xv TestStand Reference Manual

About This Manual

Use this manual to learn about TestStand concepts and features. Refer to the
TestStand System and Architecture Overview Card for information about
how to use the entire TestStand documentation set.

Conventions
The following conventions appear in this manual

<> Angle brackets that contain numbers separated by an ellipsis represent a
range of values associated with a bit or signal name—for example,
DIO<3..0>.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

♦ The ♦ symbol indicates that the following text applies only to a specific
product, a specific operating system, or a specific software version.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation 1-1 TestStand Reference Manual

1
TestStand Architecture

This chapter describes the National Instruments TestStand architecture and
provides an overview of important TestStand concepts and components. It
is useful to read Using TestStand and the TestStand System and Architecture
Overview Card before reading this manual.

National Instruments also recommends that you become familiar with the
concepts of this chapter before proceeding through this manual.

General Test Executive Concepts
A test executive is a program in which you organize and execute sequences
of reusable code modules. Ideally, a test executive allows you to create the
modules in a variety of programming environments.

This document uses a number of concepts that are applicable to test
executives in general and some that are unique to the TestStand test
executive. The following concepts are applicable to test executives in
general.

• Code module—A program module, such as a Windows dynamic
link library (.dll) or National Instruments LabVIEW VI (.vi),
containing one or more functions that perform a specific test or other
action.

• Step—An individual element of a test sequence. A step may call
code modules or perform other operations.

• Sequence—A series of steps you specify to execute in a particular
order. Whether and when a step is executed can depend on the results
of previous steps.

• Subsequence—A sequence that another sequence calls. You specify a
subsequence call as a step in the calling sequence.

• Sequence file—A file that contains the definition of one or more
sequences.

• Sequence editor—A program that provides a graphical user interface
(GUI) for creating, editing, and debugging sequences.

Chapter 1 TestStand Architecture

TestStand Reference Manual 1-2 ni.com

• Operator interface—A program that provides a GUI for executing
sequences on a production station. A sequence editor and operator
interface can be separate application programs or different aspects of
the same program.

• Test executive engine—A module or set of modules that provide an
application programming interface (API) for creating, editing,
executing, and debugging sequences. A sequence editor or operator
interface uses the services of a test executive engine.

• Application Development Environment (ADE)—A programming
environment such as LabVIEW, National Instruments
LabWindows/CVI, or Microsoft Visual Studio .NET, in which you
create code modules and operator interfaces.

• Unit Under Test (UUT)—The device or component you are testing.

Major Software Components of TestStand
This section provides an overview of the major software components of
TestStand. For a visual representation of how these components interact,
refer to the TestStand System and Architecture Overview Card, which is
included in your TestStand package. You can also refer to the TestStand
Help for more information about each of these components.

Note If you are opening help files from the <TestStand>\Doc\Help directory, National
Instruments recommends that you open TSHelp.chm. This file is a collection of all of the
TestStand Help files and provides a complete table of contents and index.

TestStand Sequence Editor
The TestStand Sequence Editor is an application program in which you
create, edit, execute, and debug sequences. The sequence editor gives you
access to all TestStand features, such as step types and process models,
and features the debugging tools you are familiar with in ADEs such as
LabVIEW, LabWindows/CVI (ANSI), and Microsoft Visual Studio .NET.
These debugging tools include setting breakpoints; stepping into, out of, or
over steps; tracing through program executions; displaying variables; and
monitoring variables and expressions during executions.

The TestStand Sequence Editor allows you to start multiple concurrent
executions—you can execute multiple instances of the same sequence,
or you can execute different sequences at the same time. Each execution
instance has its own Execution window. In trace mode, the Execution
window displays the steps in the currently executing sequence. If the

Chapter 1 TestStand Architecture

© National Instruments Corporation 1-3 TestStand Reference Manual

execution is suspended, the Execution window displays the next step to
execute and provides debugging options.

TestStand Operator Interfaces
TestStand includes several operator interfaces, each of which is a separate
application program. These interfaces, which are developed in LabVIEW,
LabWindows/CVI, Microsoft Visual Basic .NET, C#, and C++ (MFC), are
available in both source and executable formats.

The TestStand Operator Interfaces are fully customizable. Like the
TestStand Sequence Editor, the operator interfaces allow you to start
multiple concurrent executions, set breakpoints, and single-step. However,
the operator interfaces do not allow you to modify sequences, and they do
not display sequence variables, sequence parameters, step properties, and
so on.

You can use the source code of the operator interfaces as a starting point for
customization or as a model for your own operator interface. Refer to
Chapter 9, Creating Custom Operator Interfaces, for more information
about the operator interfaces that are included in TestStand.

TestStand User Interface Controls
The operator interfaces use the TestStand User Interface (UI) Controls,
a collection of ActiveX controls for creating custom user interfaces in
TestStand. These controls simplify common user interface tasks, such as
displaying sequences and executions. You can use these controls in any
programming environment that can host ActiveX controls.

Refer to the TestStand Help and to Chapter 9, Creating Custom Operator
Interfaces, for more information about the TestStand UI Controls. You can
also refer to the TestStand User Interface Controls Reference Poster, which
is included in your TestStand package, for an illustrated overview of the
controls and API.

TestStand Engine
The TestStand Engine is a set of DLLs that export an ActiveX Automation
API. The TestStand Sequence Editor and User Interface Controls use the
TestStand API, which you can call from any programming environment
that supports access to ActiveX automation servers, including code
modules you write in LabVIEW and LabWindows/CVI.

For more information about the TestStand API, refer to the TestStand Help.

Chapter 1 TestStand Architecture

TestStand Reference Manual 1-4 ni.com

Module Adapters
Most steps in a TestStand sequence invoke code in another sequence or in
a code module. When invoking code in a code module, TestStand must
know the type of code module, how to call it, and how to pass parameters
to it. The different types of code modules include LabVIEW VIs;
C functions in source, object, or library modules created in
LabWindows/CVI; C/C++ functions in DLLs; objects in .NET assemblies;
objects in ActiveX automation servers; and subroutines in HTBasic.
TestStand must also know the list of parameters required by the code
module. TestStand uses module adapters to obtain this knowledge.

TestStand includes the following module adapters:

• LabVIEW Adapter—Calls LabVIEW VIs with a variety of
connector panes.

• LabWindows/CVI Adapter—Calls C functions with a variety of
parameter types. The functions can be in object files, library files,
or DLLs. They can also be in source files that are in the project you
are currently using in LabWindows/CVI.

• C/C++ DLL Adapter—Calls functions or methods in a DLL with a
variety of parameter types, including National Instruments
Measurement Studio classes.

• .NET Adapter—Calls methods and accesses the properties of objects
in a .NET assembly.

• ActiveX/COM Adapter—Calls methods and accesses the properties
of objects in an ActiveX server.

• HTBasic Adapter—Calls HTBasic subroutines.

• Sequence Adapter—Calls other TestStand sequences with
parameters.

The module adapters contain other important information in addition to the
calling convention and parameter lists. If the module adapter is specific to
an ADE, the adapter knows how to open the ADE, how to create source
code for a new code module in the ADE, and how to display the source for
an existing code module in the ADE.

Refer to Chapter 5, Module Adapters, for more information about the
module adapters included in TestStand.

Chapter 1 TestStand Architecture

© National Instruments Corporation 1-5 TestStand Reference Manual

TestStand Building Blocks
This section provides an overview of the TestStand features that you use to
create test sequences and entire test systems.

Variables and Properties
TestStand stores data values in variables and properties. Variables are
properties you can freely create in certain contexts. You can have variables
that are global to a sequence file or local to a particular sequence. You can
also have station global variables, which have values that are persistent
across different executions and even across different invocations of the
sequence editor or operator interfaces. The TestStand Engine maintains the
value of station global variables in a file on the computer on which it is
installed.

You can use TestStand variables to share data among tests written in
different programming languages, even if they do not have compatible data
representations. You can pass values you store in variables and properties
to code modules. You can also use the TestStand API to access variable and
property values directly from code modules.

Each step in a sequence can have properties. For example, a step might have
a floating point measurement code property. A step’s type determines its set
of properties. Refer to the Step Types section of this chapter for more
information about types of steps.

When executing sequences, TestStand maintains a SequenceContext object
that contains references to all global variables, all local variables, and all
step properties in active sequences. The contents of the SequenceContext
object change according to the currently executing sequence and step. If
you pass a SequenceContext object reference to a code module, you can use
it to access information stored within the SequenceContext object.

Expressions
In TestStand, you can use the values of variables and properties in
numerous ways, such as passing a variable to a code module or using a
property value to determine whether to execute a step. For these same
purposes, you may also want to use an expression, which is a formula that
calculates a new value from the values of multiple variables or properties.
In expressions, you can access all variables and properties in the sequence
context that are active when TestStand evaluates the expression.

Chapter 1 TestStand Architecture

TestStand Reference Manual 1-6 ni.com

The following is an example of an expression:

Locals.MidBandFrequency = (Step.HighFrequency +

Step.LowFrequency) / 2

You can use an expression wherever you would use a simple variable or
property value. TestStand supports all applicable expression operators and
syntax that you would use in C, C++, Java, and Visual Basic .NET.

Additionally, all controls that accept expressions provide context-sensitive
editing features such as drop-down lists, syntax checking, and expression
coloring to help you create expressions.

Refer to the TestStand Help for more information about TestStand
expressions.

Categories of Properties
A property is a storage space for information. A property can store a single
value or an array of values of the same data type. Each property has a name.

A value can be a number, string, Boolean, .NET object reference, or an
ActiveX object reference. TestStand stores numbers as 64-bit,
floating-point values in the IEEE 754 format. Values are not containers and
thus cannot contain subproperties. Arrays of values can have multiple
dimensions.

The following major categories of properties are defined according to the
kinds of values they contain:

• Single-valued property—Contains a single value. The four types of
single-valued properties—number, string, Boolean, and object
reference—correspond to the four value types supported by TestStand.

• Array property—Contains an array of values. TestStand supports the
following array properties: number, string, Boolean, and object
reference.

• Property-array property—Contains a value that is an array of
subproperties of a single type.

• Container property—Contains no values and can contain multiple
subproperties. Container properties are analogous to structures in
C/C++ and to clusters in LabVIEW.

Chapter 1 TestStand Architecture

© National Instruments Corporation 1-7 TestStand Reference Manual

Standard and Custom Data Types
When you create a variable or property, you specify its data type. In some
cases, you use a simple data type such as a number or a Boolean. In other
cases, you may want to define your own data type by adding subproperties
to a container to create an arbitrarily complex data structure. Define your
own data type by creating a named data type. When you create a named
data type, you can reuse it with variables or properties. Although each
variable or property you create with a named data type has the same data
structure, they can contain different values.

When you create a variable or property, you can use both built-in property
types and the named data types.

TestStand defines certain standard named data types. You can add
subproperties to some standard named data types, but you cannot delete any
of their built-in subproperties. The standard named data types include
Waveform, Path, Error, Expression, and CommonResults.

Note Modifying the standard named data types may result in type conflicts when you
open other sequence files that reference these types. Refer to Chapter 12, Standard and
Custom Data Types, for more information about the standard named data types.

You can also define your own custom named data types. These data types
must use a unique name, and you can add or delete subproperties in each
custom named data type without restriction. For example, you might create
a Transmitter data type that contains subproperties such as NumChannels
and PowerLevel.

Built-In and Custom Properties
TestStand defines a number of properties that are always present for
objects, such as steps and sequences. An example is the run mode property
for steps. TestStand normally hides these properties, called built-in
properties, although it lets you modify some of them through dialog boxes.
You can also access these properties through the TestStand API.

You can define new properties in addition to the built-in properties.
Examples are high- and low-limit properties in a step or local variables in
a sequence. These properties are called custom properties.

Chapter 1 TestStand Architecture

TestStand Reference Manual 1-8 ni.com

Steps
A sequence consists of a series of steps. In TestStand, a step can perform
many actions, such as initializing an instrument, performing a complex test,
or making a decision that affects the flow of execution in a sequence. Steps
perform these actions through several types of mechanisms, including
jumping to another step, executing an expression, calling a subsequence, or
calling an external code module.

Steps can also have custom properties. For steps that call code modules,
custom step properties are useful for storing parameters to pass to the code
module for the step. They also serve as a place for the code module to store
its results. You can also use the TestStand API to access the values of
custom step properties from within code modules.

Not all steps call code modules. Some steps perform standard actions you
configure using a dialog box. In this case, custom step properties are useful
for storing the configuration settings you specify.

Step Types
Just as each variable or property has a data type, each step has a step type.
A step type can contain any number of custom properties. Each step of that
type includes the custom step properties in addition to the built-in step
properties. While all steps of the same type have the same properties, the
values of those properties can differ. The step type specifies the initial
values of all the step properties. TestStand includes a number of predefined
step types. For a description of these step types, refer to Chapter 4, Built-In
Step Types.

Although you can create a test application using only the predefined step
types in TestStand, you can also create your own custom step types.
Creating custom step types allows you to define standard, reusable classes
of steps that apply specifically to your application. Refer to Chapter 13,
Creating Custom Step Types, for more information about creating your own
step types.

Source Code Templates
TestStand also allows you to define source code templates for new step
types. When you create a new step of a particular type, you can use a source
code template to generate source code for the step’s code module. You can
specify different source code templates for the different module adapters.

Chapter 1 TestStand Architecture

© National Instruments Corporation 1-9 TestStand Reference Manual

Sequences
A TestStand sequence consists of the following components:

• A group of setup steps (Setup step group)

• A main group of steps (Main step group)

• A group of cleanup steps (Cleanup step group)

• Sequence local variables

• Parameters

• Built-in sequence properties

Step Groups
A sequence contains the following groups of steps: Setup, Main, and
Cleanup. TestStand executes the steps in the Setup step group first, the
Main step group second, and the Cleanup step group last. The Setup step
group typically contains steps that initialize instruments, fixtures, or a Unit
Under Test (UUT). The Main step group typically contains the bulk of the
steps in a sequence, including the steps that test the UUT. The Cleanup step
group typically contains steps that power down or restore the initial state of
instruments, fixtures, and the UUT.

Using separate step groups ensures that the steps in the Cleanup step group
execute regardless of whether the sequence completes successfully or a
run-time error occurs in the sequence. If a step in the Setup or Main step
group generates a run-time error, the flow of execution jumps to the
Cleanup step group. The cleanup steps always run even if some of the setup
steps do not run. If a cleanup step causes a run-time error, execution
continues to the next cleanup step.

If a run-time error occurs in a sequence, TestStand reports the run-time
error to the calling sequence. Execution in the calling sequence then jumps
to the Cleanup step group in that calling sequence. This process continues
up the call stack to the top-level sequence. Thus, when a run-time error
occurs, TestStand terminates execution after running all the cleanup steps
of all the sequences in the sequence call stack.

Sequence Local Variables
You can create an unlimited number of local variables in a sequence.
Use local variables to store data relevant to the execution of the sequence.
You can pass local variables by value or by reference to any step in the
sequence that calls a subsequence or a code module that uses the
LabVIEW, LabWindows/CVI, C/C++ DLL, .NET, or ActiveX/COM

Chapter 1 TestStand Architecture

TestStand Reference Manual 1-10 ni.com

Adapter. You can also access local variables from code modules of steps in
the sequence using the TestStand API.

Note TestStand can only pass data to LabVIEW VIs by value. LabVIEW does not support
passing data by reference.

Sequence Parameters
Each sequence has its own list of parameters. Use these parameters to pass
data to a sequence when you call that sequence as a subsequence. Using
parameters in this way is analogous to passing arguments to a function call
or wiring data to terminals when you call a subVI in LabVIEW. You can
also specify a default value for each parameter.

You can specify the number of parameters and the data type of each
parameter. You can either select a value to pass to the parameter, or use the
default value specified by the parameter. You can pass sequence parameters
by value or by reference to any step in the sequence that calls a subsequence
or any step that calls a code module that uses the LabVIEW,
LabWindows/CVI, C/C++ DLL, .NET, or ActiveX/COM Adapter.

You can also access parameters from code modules of steps in the sequence
by using the TestStand API.

Note TestStand can only pass data to LabVIEW VIs by value. LabVIEW does not support
passing data by reference.

Built-in Sequence Properties
Sequences have built-in properties that you can specify using the Sequence
Properties dialog box. For example, you can specify that the flow of
execution jumps to the Cleanup step group whenever a step sets the status
of the sequence to Failed.

Refer to the TestStand Help for more information about the Sequence
Properties dialog box.

Sequence Files
Sequence files can contain one or more sequences. Sequence files can also
contain global variables that all sequences in the sequence file can access.

Sequence files have built-in properties that you can specify using the
Sequence File Properties dialog box. For example, you can specify Load

Chapter 1 TestStand Architecture

© National Instruments Corporation 1-11 TestStand Reference Manual

and Unload Options that override the Load and Unload Options of all the
steps in all of the sequences in the file.

Refer to the TestStand Help for more information about the Sequence
Properties dialog box.

Process Models
Testing a UUT requires more than just executing a set of tests. Usually, the
test system must perform a series of operations before and after it executes
the sequence that performs the tests. Common operations include
identifying the UUT, notifying the operator of pass/fail status, logging
results, and generating a test report. These operations define the testing
process. The set of such operations and their flow of execution is called a
process model.

Some commercial test executives implement their process model internally
and do not allow you to modify them. Other test executives do not come
with a process model at all. TestStand comes with three default process
models that you can modify or replace: the Sequential model, the Batch
model, and the Parallel model. You can use the Sequential model to run a
test sequence on one UUT at a time. The Parallel and Batch models allow
you to run the same test sequence on multiple UUTs at the same time.

TestStand provides a mechanism for defining your own process model,
which is a sequence file that enables you to write different test sequences
without repeating standard testing operations in each sequence. This
modification is essential since the testing process can vary according to
your production line, your production site, or the systems and practices of
your company. You can edit a process model in the same way that you edit
your other sequence files.

Station Model
You can specify a process model file to use for all sequence files. This
process model file is called the station model. The Sequential model is the
default station model file. You can use the Station Options dialog box to
select a different station model, or to allow individual sequence files to
specify their own process model file.

Refer to the TestStand Help for more information about the Station Options
dialog box.

Chapter 1 TestStand Architecture

TestStand Reference Manual 1-12 ni.com

Main Sequence and Client Sequence File
In TestStand, the sequence that initiates the tests on a UUT is called the
Main sequence. While the process model defines what is constant about
your testing process, Main sequences define the steps that are unique to the
different types of tests you run. When you create a new sequence file,
TestStand automatically inserts a Main sequence in that file. The process
model invokes the Main sequence as part of the overall testing process.
You must name each Main sequence MainSequence.

You begin an execution from a Main sequence in one of your sequence
files. TestStand determines which process model file to use with the Main
sequence. TestStand uses the station model file unless the sequence file
specifies a different process model file and you have set the Allow Other
Models option in the Station Options dialog box to allow sequence files to
override your station model setting.

After TestStand identifies the process model to use with the Main sequence,
the file containing the Main sequence becomes a client sequence file of the
process model.

Entry Points
A process model defines a set of entry points. Each entry point is a
sequence in the process model file. By defining multiple entry points in a
process model, you give the test station operator different ways to invoke a
Main sequence or configure the process model.

The sequence for a Process Model entry point can contain calls to DLLs,
subsequences, Goto steps, and so on. You can specify two types of entry
points—Execution entry points and Configuration entry points.

Refer to Chapter 3, Executions, for more information about entry points.

Automatic Result Collection
TestStand can automatically collect the results of each step. You can enable
or disable result collection for a step, a sequence, an execution, or for the
entire test station.

Each sequence has a local array that stores the results of each step. The
contents in the results for each step can vary depending on the step type.
When TestStand stores the results for a step into the array, it adds
information such as the name of the step and its position in the sequence.
For a step that calls a sequence, TestStand also adds the result array from
the subsequence.

Chapter 1 TestStand Architecture

© National Instruments Corporation 1-13 TestStand Reference Manual

Refer to the Result Collection section of Chapter 3, Executions, for more
information about how TestStand collects results. Refer to Chapter 6,
Database Logging and Report Generation, for information about
TestStand’s report generation and database logging features for processing
the collected test results.

Callback Sequences
Callbacks are sequences that TestStand calls under specific circumstances.
You can create new callback sequences or you can replace existing
callbacks to customize the operation of the test station. To add a callback
sequence to a sequence file, use the Sequence File Callbacks dialog box.

Refer to the TestStand Help for more information about the Sequence File
Callbacks dialog box.

TestStand defines three categories of callbacks: Model callbacks, Engine
callbacks, and Front-End callbacks. The categories are based on the entity
that invokes the callback and the location in which you define the callback.
Model callbacks allow you to customize the behavior of a process model
for each Main sequence that uses it. Engine callbacks are defined by the
TestStand Engine and are invoked at specific points during execution.
Front-End callbacks are called by operator interface programs to allow
multiple operator interfaces to share the same behavior for a specific
operation.

Table 1-1 illustrates the different types of callbacks.

Table 1-1. Callback Types

Callback Type Where You Define the Callback Who Calls the Callback

Model Callbacks Process model file,
the client sequence file,
or StationCallbacks.seq

Sequences in the process
model file

Engine Callbacks StationCallbacks.seq for
Station Engine callbacks,
the process model file for Process
Model Engine callbacks,
or a regular sequence file for
Sequence File Engine callbacks

Engine

Front-End Callbacks FrontEndCallbacks.seq Operator interface application

Chapter 1 TestStand Architecture

TestStand Reference Manual 1-14 ni.com

Sequence Executions
When you run a sequence, TestStand creates an Execution object that
contains all of the information that TestStand needs to run your sequence
and the subsequences it calls. While an execution is active, you can start
another execution by running the same sequence again or by running a
different one. TestStand does not limit the number of executions that you
can run concurrently. An Execution object initially starts with a single
execution thread. You can use sequence call multithreading options to
create additional threads within an execution or to launch new executions.
An execution groups related threads so that setting a breakpoint suspends
all threads in the execution. In the same way, terminating an execution also
terminates all threads in that execution.

© National Instruments Corporation 2-1 TestStand Reference Manual

2
Sequence Files and Workspaces

This chapter describes TestStand sequence files and workspaces.

Sequence Files
A TestStand sequence file (.seq) is a file that contains any number of
sequences, a set of types used in the sequence file, and any global variables
shared by steps and sequences in the file.

Types of Sequence Files
TestStand contains the following types of sequence files:

• Normal—Contains sequences that test UUTs

• Model—Contains process model sequences

• Station Callback—Contains Station callback sequences

• Front-End Callback—Contains Front-End callback sequences

Most sequence files you create are normal sequence files. Usually, your
computer has one Station callback sequence file and one Front-End
callback sequence file.

Normal sequence files can specify that they always use the station process
model, a specific process model, or no process model.

From within the TestStand Sequence Editor, use the Sequence File
Properties dialog box to set the type of sequence, the sequence file process
model settings, and other sequence file properties.

Refer to the TestStand Help for more information about the Sequence File
Properties dialog box.

Chapter 2 Sequence Files and Workspaces

TestStand Reference Manual 2-2 ni.com

Sequence File Callbacks
Callbacks are sequences that TestStand calls under specific circumstances.
Sequence files can contain sequences that override these callback
sequences. Use the Sequence File Callbacks dialog box to specify these
sequences.

Refer to the TestStand Help for more information about the Sequence File
Callbacks dialog box. Refer to Chapter 10, Customizing Process Models
and Callbacks, for more information about callbacks and overriding
callback sequences.

Sequence File Globals
Each sequence file can contain any number of global variables. These
variables are accessible from any step or sequence within the sequence file
in which they are defined. View and edit the global variables in the
Sequence File Globals view.

Refer to the TestStand Help for more information about the Sequence File
Globals view.

Sequence File Type Definitions
Sequence files contain the type definitions for every step, property, and
variable that the sequence file contains. View and edit the types that a
sequence file contains in the Sequence File Types view.

Refer to the TestStand Help for more information about the Sequence File
Types view. Refer to Chapter 11, Type Concepts, for more information
about types and type editing.

Comparing and Merging Sequence Files
The Sequence File Differ is a tool within the sequence editor that enables
you to compare and merge differences between two sequence files. The
Sequence File Differ compares the sequence files and presents the
differences in a separate, two-pane window.

Refer to the TestStand Help for more information about the Differ window.

Chapter 2 Sequence Files and Workspaces

© National Instruments Corporation 2-3 TestStand Reference Manual

Sequences
Each sequence can contain steps, parameters, and local variables. View and
edit the contents of a specific sequence in the Individual Sequence view.

Sequences have properties that you can view and edit from the Sequence
Properties dialog box. For more information about the Sequence Properties
dialog box, refer to the TestStand Help.

Step Groups
Sequences contain their steps in three groups: Setup, Main, and Cleanup.
You can view and edit the step groups on their corresponding tabs in the
Sequence view of the Sequence File window.

The Setup step group contains steps that initialize or configure your
instruments, fixtures, and UUTs. The Main step group contains steps that
test your UUTs. The Cleanup step group contains steps that power down or
release handles to your instruments, fixtures, and UUTs.

Refer to the TestStand Help for more information about the Step Group
tabs.

Parameters
Each sequence has its own list of parameters. Use these parameters to pass
data to and from a sequence when you call that sequence as a subsequence.
You can view and edit the parameters for a sequence on the Parameters tab
in the Sequence view of the Sequence File window.

Refer to the TestStand Help for more information about the Parameters tab.

Local Variables
Use local variables to store data relevant to the execution of the sequence.
You can access local variables from within steps and code modules. You
can also use local variables for maintaining counts, holding intermediate
values, or any other purpose. View and edit the local variables for a
sequence on the Locals tab in the Sequence view of the Sequence File
window.

Refer to the TestStand Help for more information about the Locals tab.

Chapter 2 Sequence Files and Workspaces

TestStand Reference Manual 2-4 ni.com

Sequence File Window and Views
Within the TestStand Sequence Editor, you can view and edit sequence
files in the Sequence File window, which is illustrated in Figure 2-1.

Figure 2-1. Sequence File Window

To open an existing sequence file in the Sequence File window, select
File»Open. To create a new Sequence File window, select File»New.

Use the View ring control, located at the top right of the Sequence File
window, to select the aspect of the file that you want to display. The View
ring control contains the following display options:

• All Sequences—Accesses a list of sequences in a file. Use this view to
create new sequences and to cut, copy, and paste sequences. You can
also drag and drop sequences from this view to the All Sequences view
in another Sequence File window.

• Individual Sequence—Accesses the contents of a specific sequence.

• Sequence File Globals—Accesses the global variables for the
sequence.

• Sequence File Types—Accesses the types that the sequence file
contains.

Refer to the TestStand Help for more information about the Sequence File
window and its views.

Chapter 2 Sequence Files and Workspaces

© National Instruments Corporation 2-5 TestStand Reference Manual

Workspaces
A TestStand workspace file (.tsw) contains references to any number of
TestStand project files. A TestStand project file (.tpj) contains references
to any number of other files of any type.

Use TestStand project files to organize related files in your test system. You
can insert any number of files into a project. You can also insert folders in
a project to contain files or other folders.

In the sequence editor, you use the Workspace window to view and edit a
workspace file and the project files it references. You can only have one
workspace file open at a time. To open an existing workspace file, select
File»Open Workspace File. To create a new workspace file, select File»
New Workspace File.

Refer to the TestStand Help for more information about the Workspace
window.

Source Code Control
You can use workspace and project files in TestStand to access your files
in a source code control (SCC) system. To perform SCC operations on your
files from within TestStand, select a SCC provider on the Source Control
tab on the Station Options dialog box.

Note National Instruments has tested TestStand with the following source code control
providers: Microsoft Visual SourceSafe, Perforce, MKS Source Integrity, and Rational
ClearCase.

Refer to the TestStand Help for more information about using SCC tools
with TestStand.

System Deployment
The TestStand Deployment Utility uses workspace and project files to
collect all of the files required to successfully distribute your test system to
a target computer. The deployment utility also creates an installer for your
test system.

Refer to Chapter 14, Deploying TestStand Systems, for more information
about system deployment and the TestStand Deployment Utility.

© National Instruments Corporation 3-1 TestStand Reference Manual

3
Executions

This chapter describes TestStand executions.

What is an Execution?
An execution is an object that contains all of the information that TestStand
uses to run your sequence and subsequences. When an execution is active,
you can start other executions by running the same sequence again or by
running different sequences. TestStand does not limit the number of
executions you can run concurrently. An execution may start with a single
thread and then launch additional threads. When you suspend, terminate, or
abort an execution, you stop all threads in that execution.

Whenever TestStand begins executing a sequence, it makes a run-time copy
of the sequence local variables and the custom properties of the steps in a
sequence. If the sequence calls itself recursively, TestStand creates a
separate run-time copy of the local variables and custom step properties for
each running instance of the sequence. Modifications to the values of local
variables and custom step properties only apply to the run-time copy and
do not affect the sequence file in memory or on disk.

Note Built-in properties of steps and sequences are flagged to be shared at run time.
For these shared properties, TestStand does not create a unique run-time copy, but instead
references the edit-time copy. Any changes to the run-time reference of these built-in
properties edits the original Step or Sequence object in the sequence file.

For each execution, TestStand maintains an execution pointer that points to
the current step, a call stack, and a run-time copy of the local variables and
custom properties for all sequences and steps on the call stack.

The Execution tab on the Station Options dialog box provides a number of
execution options that control tracing, breakpoints, and result collection.
Refer to the TestStand Help for more information about the Execution tab
on the Station Options dialog box.

Chapter 3 Executions

TestStand Reference Manual 3-2 ni.com

Sequence Context
Before executing the steps in a sequence, TestStand creates a run-time copy
of the sequence. This allows TestStand to maintain separate local variable
and step property values for each sequence invocation.

TestStand also maintains a sequence context that contains references to all
global variables and step properties in the active sequence. The contents of
a sequence context can vary depending on the currently executing step. For
more information about the contents of the sequence context, refer to the
TestStand Help.

Using the Sequence Context
In expressions, access the value of a variable or property by specifying a
path from the sequence context to the particular variable or property. For
example, you can set the status of a step using the following expression:

Step.Result.Status = "Passed"

During an execution, you can view and modify the values of the properties
in the sequence context from the Context tab on the Execution window. The
Context tab displays the sequence context for the sequence invocation that
is currently selected in the Call Stack pane. You can also monitor individual
variables or properties from the Watch Expression pane. Refer to the
TestStand Help for more information about using the Context tab, Watch
Expression pane, and Call Stack pane of the Execution window.

You can pass a reference to a SequenceContext object from a code module.
In code modules, you access the value of a variable or property by using
PropertyObject methods in the TestStand API with the sequence context.
As with expressions, you must specify a path from the sequence context to
the particular property or variable. Refer to Chapter 5, Module Adapters,
for more information about passing the SequenceContext object to a code
module for each adapter. Refer to the TestStand Help for more information
about accessing the properties in the sequence context from code modules.

Select View»Browse Sequence Context in the sequence editor to open a
tree view containing the names of variables, properties, and sequence
parameters that you can access from expressions and code modules. Refer
to the TestStand Help for more information about the Sequence Context
tree view.

Note Some properties are not populated until run time.

Chapter 3 Executions

© National Instruments Corporation 3-3 TestStand Reference Manual

Lifetime of Local Variables, Parameters, and
Custom Step Properties
Multiple instances of a sequence can run at the same time. This situation
can occur when you call a sequence recursively or when a sequence runs in
multiple concurrent threads. Each instance of the sequence has its own
copy of the sequence parameters, local variables, and custom properties of
each step. When a sequence completes, TestStand discards the values of the
parameters, local variables, and custom properties.

Sequence Editor Execution Window
The sequence editor displays each execution in a separate Execution
window. Figure 3-1 illustrates the Execution window.

Figure 3-1. Sequence Editor Execution Window

Refer to the TestStand Help for more information about the Execution
window.

Chapter 3 Executions

TestStand Reference Manual 3-4 ni.com

Starting an Execution
You can initiate an execution by launching a sequence through an
Execution entry point, by launching a sequence directly, or by executing a
group of steps interactively.

Execution Entry Points
You can only start an execution through an Execution entry point when a
sequence file that contains a sequence with the name MainSequence
occupies the active window. A list of Execution entry points appears in the
Execute menu of the sequence editor.

Each Execution entry point in the menu represents a separate entry point
sequence in the process model that applies to the active sequence file. When
you select an Execution entry point from the Execute menu, you are
actually running an entry point sequence in a process model file. The
Execution entry point sequence, in turn, invokes the Main sequence
one time or multiple times.

Execution entry points in a process model give the test station operator
different ways to invoke a Main sequence. Execution entry points handle
common operations such as UUT identification and test report generation.
For example, the default TestStand process model provides two Execution
entry points: Test UUTs and Single Pass. The Test UUTs Execution entry
point initiates a loop that repeatedly identifies and tests UUTs. The Single
Pass Execution entry point tests a single UUT without identifying it.

Refer to Chapter 10, Customizing Process Models and Callbacks, and
Appendix A, Process Model Architecture, for more information about
using process models in TestStand.

Executing a Sequence Directly
To execute a sequence without using a process model, select
Run <Sequence Name> from the Execute menu, where <Sequence
Name> is the name of the sequence you are currently viewing. This
command executes the sequence directly, skipping the process model
operations such as UUT identification and test report generation. You can
use this method to execute any sequence.

Tip Executing a sequence directly is best for performing unit testing or debugging.

Chapter 3 Executions

© National Instruments Corporation 3-5 TestStand Reference Manual

Interactively Executing Steps
To interactively execute selected steps in a sequence, select
Run Selected Steps or Loop On Selected Steps from the context menu or
from the Execute menu in the sequence editor or operator interfaces.

There are two ways that you can run steps in interactive mode:

• Run steps interactively from a Sequence File window. This creates a
new execution called a root interactive execution. You can set station
options to control whether the Setup and Cleanup step groups of the
sequence run as part of a root interactive execution.

• Run steps interactively from an existing Execution window for a
normal execution that is suspended at a breakpoint by selecting
Run Selected Steps or Loop On Selected Steps. The selected steps run
within the context of the normal execution. This is called a nested
interactive execution.

The steps that you run interactively can access the variable values of
the normal execution and add to its results. If you used the process
model for the original execution, these results are included in the test
report. When the selected steps complete, the execution returns to the
step at which it was originally suspended.

In interactive mode, the selected steps run in the order in which they appear
in the sequence. A configurable station option specifies whether a branch
operation is allowed to a specific step or a non-selected step, or whether
only the selected steps in a sequence execute, regardless of any branching
logic that the sequence contains.

To configure whether TestStand evaluates preconditions when executing
interactively, select Configure»Station Options and enable the Evaluate
Preconditions option in the Interactive Executions section of the
Execution tab on the Station Options dialog box. You can also use this
dialog box to configure whether interactive executions branch to unselected
steps in the Branching Mode control.

Terminating and Aborting Executions
The menus in the sequence editor and operator interfaces include
commands that allow you to stop execution before the execution has
completed normally. The TestStand API has corresponding methods that
allow you to stop execution from inside of a code module or determine
whether the execution has been stopped. You can stop one execution or all
executions by issuing a stop request at any time. Stop requests do not take

Chapter 3 Executions

TestStand Reference Manual 3-6 ni.com

effect in each execution until the currently executing code module returns
control.

You can stop executions in two ways:

• When you terminate an execution, all the Cleanup step groups in the
sequences on the call stack run before execution ends. Also, if you
terminate an execution while the client sequence file is still running,
the process model will continue to run, possibly testing the next UUT
or generating a test report.

• When you abort an execution, the Cleanup step groups do not run, and
the process model will not continue. Abort an execution in cases when
you want an execution to completely stop as soon as possible. In
general, it is better to terminate execution so that the Cleanup step
groups can return your system to a known state.

Tip You should only abort an execution when you are debugging and when you are sure
that it is safe to skip the cleanup steps for a sequence.

Result Collection
TestStand can automatically collect the results of each step. You can
configure this feature for each step on the Run Options tab on the Step
Properties dialog box. You can disable result collection for an entire
sequence in the Sequence Properties dialog box or completely disable
result collection on your computer in the Station Options dialog box.

Each sequence has a ResultList local variable, which is an empty array of
container properties. TestStand appends a new container property, the step
result, to the end of the ResultList array before a step executes. After the
step executes, TestStand automatically copies the contents of the Result
subproperty for the step into the step result.

Each step type can define different contents for its Result subproperty, and
TestStand can append step results that contain Result properties from
different step types to the same ResultList array. When TestStand copies the
Result property for a step to its step result, it also adds the name of the step,
its position in the sequence, and other identifying information. For a step
that calls a subsequence, TestStand also adds the ResultList array variable
from the subsequence.

Chapter 3 Executions

© National Instruments Corporation 3-7 TestStand Reference Manual

Through the TestStand API, a code module can request that TestStand
insert additional step properties in the step results for all steps
automatically. A code module can also use the TestStand API to insert
additional step result information for a particular step.

Custom Result Properties
Because each step type can have a different set of subproperties under
its Result property, the step result varies according to the step type.
Table 3-1 lists the custom properties that the step result can contain for
steps that use one of the built-in step types.

Table 3-1. Custom Properties in the Step Results for Steps that
Use the Built-In Step Types

Custom Step Property Step Types that Use the Property

Error.Code All

Error.Msg All

Error.Occurred All

Status All

Common All

Numeric Numeric Limit Test,
Multiple Numeric Limit Test

PassFail Pass Fail Test

String String Value Test

ButtonHit Message Popup

Response Message Popup

ExitCode Call Executable

NumPropertiesRead Property Loader

NumPropertiesApplied Property Loader

ReportText All

Limits.Low Numeric Limit Test,
Multiple Numeric Limit Test

Limits.High Numeric Limit Test
Multiple Numeric Limit Test

Chapter 3 Executions

TestStand Reference Manual 3-8 ni.com

Note Table 3-1 does not include the result properties for Synchronization, IVI, or
Database step types. For more information about these step types, refer to Appendix B,
Synchronization Step Types; Appendix C, IVI Step Types; and Appendix D, Database Step
Types.

In the case of the Numeric Limit Test and the String Value Test, the
Limits.Low, Limits.High, and Comp properties are not subproperties of the
Result property. Therefore, TestStand does not automatically include these
properties in the step result. Depending on options you set during the step
configuration, the default process model uses the TestStand API to include
the Limits.Low, Limits.High, and Comp properties in the step results for
Numeric Limit Test and String Value Test steps that contain these
properties.

For the Sequence Call step type, the AsyncID and AsyncMode properties
are not subproperties of the Result property. TestStand adds these
properties to the step results for Sequence Call steps that call subsequences
asynchronously.

The Common result subproperty uses the CommonResults custom data
type. The Common property is a subproperty of the Result property for
every built-in step type. Consequently, you can add a subproperty to the
result of every step type by adding a subproperty to the definition of the
CommonResults custom data type.

Be aware that if you modify CommonResults without incrementing the
type version number, you may see a type conflict when you open other
sequence files. These conflicts can include FrontEndCallbacks.seq
when you are logging in or out. TestStand will automatically prompt you to
increment the version number when saving changes to any data type or
step type.

Comp String Value Test,
Numeric Limit Test,
Multiple Numeric Limit Test

Measurement Multiple Numeric Limit Test

AsyncID Sequence Call

AsyncMode Sequence Call

Table 3-1. Custom Properties in the Step Results for Steps that
Use the Built-In Step Types (Continued)

Custom Step Property Step Types that Use the Property

Chapter 3 Executions

© National Instruments Corporation 3-9 TestStand Reference Manual

Standard Result Properties
In addition to copying custom step properties, TestStand also adds a set of
standard properties to each step result as subproperties of the TS property.
Table 3-2 lists the standard step result properties.

Table 3-2. Standard Step Result Properties

Standard Result Property Description

TS.StartTime Time at which the step began executing, specifically, the
number of seconds since the TestStand Engine initialized.

TS.TotalTime Number of seconds the step took to execute. This time includes
the time for all step options including preconditions,
expressions, post actions, module loading, and module
execution.

TS.ModuleTime Number of seconds that the code module took to execute.

TS.Index Zero-based position of the step in the step group.

TS.StepName Name of the step.

TS.StepGroup Step group that contains the step. The values are Main, Setup,
or Cleanup.

TS.StepId Unique Step Id.

TS.Id A number that TestStand assigns to the step result. The number
is unique with respect to all other step results in the current
TestStand session.

TS.InteractiveExeNum A number that TestStand assigns to an interactive execution.
The number is unique with respect to all other interactive
executions in the current TestStand session. TestStand only
adds this property if you run the step interactively.

TS.StepType Name of the step type.

TS.Server This property contains the name of the server machine on which
the step runs the subsequence it calls. This result property only
exists for Sequence Call steps that run subsequences on a
remote machine.

TS.StepCausedSequenceFailure This property only exists if the step fails. The value is True if
the step failure causes the sequence to fail. The value is False
if the step failure does not cause the sequence to fail or if the
sequence has already failed.

Chapter 3 Executions

TestStand Reference Manual 3-10 ni.com

Subsequence Results
If a step calls a subsequence or generates a call to a callback sequence,
TestStand creates a special step result subproperty to store the result of the
subsequence. Table 3-3 lists the name of the subproperty for each type of
subsequence call.

Table 3-3. Property Names for Subsequence Results

Result Subproperty Name Type of Subsequence Call

TS.SequenceCall Sequence Call

TS.PostAction Post Action Callback

TS.SequenceFilePreStep SequenceFilePreStep Callback

TS.SequenceFilePostStep SequenceFilePostStep Callback

TS.ProcessModelPreStep ProcessModelPreStep Callback

TS.ProcessModelPostStep ProcessModelPostStep Callback

TS.StationPreStep StationPreStep Callback

TS.StationPostStep StationPostStep Callback

TS.SequenceFilePreInteractive SequenceFilePreInteractive Callback

TS.SequenceFilePostInteractive SequenceFilePostInteractive Callback

TS.ProcessModelPreInteractive ProcessModelPreInteractive Callback

TS.ProcessModelPostInteractive ProcessModelPostInteractive Callback

TS.StationPreInteractive StationPreInteractive Callback

TS.StationPostInteractive StationPostInteractive Callback

TS.SequenceFilePostResultListEntry SequenceFilePostResultListEntry Callback

TS.ProcessModelPostResultListEntry ProcessModelPostResultListEntry Callback

TS.StationPostResultListEntry StationPostResultListEntry Callback

TS.SequenceFilePostStepRuntimeError SequenceFilePostStepRuntimeError Callback

TS.ProcessModelPostStepRuntimeError ProcessModelPostStepRuntimeError Callback

TS.StationPostStepRuntimeError StationPostStepRuntimeError Callback

TS.SequenceFilePostStepFailure SequenceFilePostFailure Callback

Chapter 3 Executions

© National Instruments Corporation 3-11 TestStand Reference Manual

TestStand adds the following properties to the subproperty for each
subsequence:

• SequenceFile—Absolute path of the sequence file that contains the
subsequence.

• Sequence—Name of the subsequence called by the step.

• Status—Status of the subsequence called by the step.

• ResultList—Value of Locals.ResultList for the subsequence that the
step called. This property contains the results for the steps in the
subsequence.

Loop Results
When you configure a step to loop, you can use the Record Result of Each
Iteration option on the Loop Options tab on the Step Properties dialog box
to direct TestStand to store a separate result for each loop iteration in the
result list. In the result list, the results for the loop iterations come
immediately after the result for the step as a whole.

TestStand adds a TS.LoopIndex numeric property to each loop iteration
result to record the value of the loop index for that iteration. TestStand also
adds the following special loop result properties to the main result for the
step.

• TS.EndingLoopIndex—Value of the loop index when looping
completes.

• TS.NumLoops—Number of times the step loops.

• TS.NumPassed—Number of loops for which the step status is
Passed or Done.

• TS.NumFailed—Number of loops for which the step status is
Failed.

TS.ProcessModelPostStepFailure ProcessModelPostFailure Callback

TS.StationPostStepFailure StationFilePostFailure Callback

Table 3-3. Property Names for Subsequence Results (Continued)

Result Subproperty Name Type of Subsequence Call

Chapter 3 Executions

TestStand Reference Manual 3-12 ni.com

Report Generation
When you run a sequence using the Test UUTs or Single Pass Execution
entry points, the default process model generates the test report by
traversing the results for the Main sequence in the client sequence file and
all of the subsequences it calls.

Refer to the Process Models section of Chapter 1, TestStand Architecture;
Chapter 10, Customizing Process Models and Callbacks; and Appendix A,
Process Model Architecture, for more information about process models.
Refer to Chapter 6, Database Logging and Report Generation, for more
information about report generation.

Engine Callbacks
TestStand specifies a set of callback sequences that it invokes at specific
points during execution. These callbacks are called Engine callbacks.

Engine callbacks are a way for you to tell TestStand to call certain
sequences before and after the execution of individual steps, before and
after interactive executions, after loading a sequence file, and before
unloading a sequence file. Because the TestStand Engine controls the
execution of steps and the loading and unloading of sequence files,
TestStand defines the set of Engine callbacks and their names.

Refer to Chapter 10, Customizing Process Models and Callbacks, for more
information about Engine callbacks.

Step Execution
Depending on the options you set during step configuration, a step
performs a number of actions as it executes. Table 3-4 lists the most
common actions that a step can take, in the order that the step performs
them.

Table 3-4. Order of Actions that a Step Performs

Action Number Description Remarks

1 Enter batch synchronization
section

If option is set

2 Acquire step lock If option is set

3 Allocate step result —

Chapter 3 Executions

© National Instruments Corporation 3-13 TestStand Reference Manual

4 Evaluate precondition If False, go to
Action Number 27

5 Check run mode —

6 Load module if not already loaded —

7 Evaluate Loop Initialization
expression

Only if looping

8 Evaluate Loop While expression,
skip to Action Number 22
if False

Only if looping

9 Allocate loop iteration result Only if looping

10 Call Pre-Step Engine callbacks —

11 Evaluate Pre-Expression —

12 Call Pre-Step substeps for
step type

—

13 Call module —

14 Call Post-Step substeps for
step type

TestStand calls Post-Step substeps
even if the user code module

generates a run-time error. This
enables Post-Step substeps to

perform error handling,
if appropriate.

15 Evaluate Post-Expression —

16 Evaluate Status expression —

17 Call Post-Step Engine callbacks —

18 Call PostStepFailure Engine
callback

Only if loop iteration fails

19 Fill out loop iteration result Only if looping

20 Call PostResultListEntry Engine
callback

Only if looping

Table 3-4. Order of Actions that a Step Performs (Continued)

Action Number Description Remarks

Chapter 3 Executions

TestStand Reference Manual 3-14 ni.com

Usually, a step performs only a subset of these actions, depending on the
configuration of the step and the test station. When TestStand detects a
run-time error, it calls the PostStepRuntimeError callback. If these
callbacks are not defined or if they do not reset the error state for the step,
TestStand proceeds to Action Number 27. If a run-time error occurs in a
loop iteration, TestStand performs Action Number 19 before performing
Action Number 27.

Step Status
Every step in TestStand has a Result.Status property. The status property is
a string that indicates the result of the step execution. Although TestStand
imposes no restrictions on the values to which the step or its code module
can set the status property, TestStand and the built-in step types use and
recognize the values that appear in Table 3-5.

21 Evaluate Loop Increment
expression, return to Action
Number 8

Only if looping

22 Evaluate Loop Status expression Only if looping

23 Unload module if required —

24 Update sequence failed state

25 Call PostStepFailure Engine
callback

Only if step fails

26 Execute post action —

27 Fill out step result —

28 Call PostResultListEntry Engine
callback

—

29 Release step lock If option is set

30 Exit batch synchronization section If option is set

Table 3-4. Order of Actions that a Step Performs (Continued)

Action Number Description Remarks

Chapter 3 Executions

© National Instruments Corporation 3-15 TestStand Reference Manual

Failures
TestStand considers a step to have failed if the step executes and the step
status is Failed. If you enable the Step Failure Causes Sequence Failure
option on the Run Options tab on the Step Properties dialog box, TestStand
sets the sequence status to Failed when the step fails. When the sequence
returns as Failed, the Sequence Call step also fails. In this way, a step
failure in a subsequence can propagate up through the chain of Sequence
Call steps.

Note For most step types, the Step Failure Causes Sequence Failure option is enabled by
default.

You can also control how execution proceeds after a step failure causes a
sequence to fail. To configure an execution to jump to the Cleanup step
group upon failure, enable the Immediately Goto Cleanup on Sequence
Failure option in the Sequence Properties dialog box. By default, this
option is disabled.

Table 3-5. Standard Values for the Status Property

String Value Meaning
Source of the
Status Value

Passed Indicates that the step performed a test that passed. Step or code module

Failed Indicates that the step performed a test that failed. Step or code module

Error Indicates that a run-time error occurred. TestStand

Done Indicates that the step completed without setting its
status.

TestStand

Terminated Indicates that the step called a subsequence in which
execution terminated. Only occurs for Sequence Call
steps for which you enable the Ignore Termination
option on the Run Options tab on the Step Properties
dialog box.

TestStand

Skipped Indicates that the step did not execute because the run
mode for the step is Skip.

TestStand

Running Indicates that the step is currently running. TestStand

Looping Indicates that the step is currently running in loop
mode.

TestStand

Chapter 3 Executions

TestStand Reference Manual 3-16 ni.com

Run-Time Errors
TestStand generates a run-time error if it encounters a condition that
prevents a sequence from executing. If, for example, a precondition refers
to the status of a step that does not exist, TestStand generates a run-time
error when it attempts to evaluate the precondition. TestStand also
generates a run-time error when a code module causes an access
violation or any other exception.

TestStand does not use run-time errors to indicate UUT test failures.
Instead, a run-time error indicates that a problem exists with the testing
process itself and that testing cannot continue. Usually, a code module
reports a run-time error if it detects an error in a hardware or software
resource that it utilizes to perform a test.

TestStand allows you to decide interactively how to handle a run-time error.
To interactively handle a run-time error, configure TestStand to launch the
Run-Time Error dialog box in the event of an error by selecting Show
Dialog from the On Run-Time Error ring control on the Execution tab on
the Station Options dialog box. Refer to the TestStand Help for more
information about the Station Options and Run-Time Error dialog boxes.

© National Instruments Corporation 4-1 TestStand Reference Manual

4
Built-In Step Types

This chapter describes the core set of built-in step types that TestStand
provides and groups them into the following categories:

• Step types that you can use with any module adapter. Step types such
as the Numeric Limit Test and the String Value Test call any code
module you specify. They also might perform additional actions such
as comparing a value the code module returns with limits you specify.

• Step types that always use a specific module adapter to call code
modules. Sequence Call is the only step type in this category.

• Step types that perform a specific action and do not require you to
specify a code module. Step types such as Message Popup and
Statement perform an action that you configure in an editing dialog
box that is specific to the step type.

Note TestStand also includes sets of application-specific step types. For example,
TestStand provides sets of step types that make it easier to synchronize multiple threads,
control IVI instruments, and access databases. For more information about these step
types, refer to Appendix B, Synchronization Step Types; Appendix C, IVI Step Types;
and Appendix D, Database Step Types.

Overview
This section describes general features of built-in step types.

Using Step Types
Use step types when you insert steps in the Setup, Main, and Cleanup tabs
of an individual sequence view in the Sequence File window. The Insert
Step item in the context menu displays a submenu that shows all of the
available step types.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-2 ni.com

Figure 4-1 shows the submenu for the Insert Step item.

Figure 4-1. Insert Step Submenu

When you select a step type in the submenu, TestStand creates a step using
the step type and module adapter indicated in the submenu entry. After you
insert the step, select Specify Module from the context menu to specify the
code module or sequence, if any, that the step calls. The Specify Module
command launches a dialog box that is different for each adapter. The
generic name for the dialog box is the Specify Module dialog box. Refer to
Chapter 5, Module Adapters, and the TestStand Help for information about
the Specify Module dialog box for each adapter.

For each step type, other items can appear in the context menu above the
Specify Module item. For example, the Edit Limits item appears in the
context menu for Numeric Limit Test steps, and the Edit Pass/Fail Source
item appears in the context menu for Pass/Fail Test steps. Select the menu
item to launch a step-type-specific dialog box, in which you can modify
step properties that are specific to the step type. Refer to the TestStand Help
for information about the menu item for each of the built-in step types.

To modify step properties that are common to all step types, select
Properties from the context menu, double-click the step, or press <Enter>
with the step selected. The Step Properties dialog box contains buttons to
open the Specify Module dialog box and the step-type-specific dialog
boxes. Refer to the TestStand Help for more information about the Step
Properties dialog box.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-3 TestStand Reference Manual

Built-In Step Properties
TestStand steps feature a number of built-in properties which you can
specify using the various options on the Step Properties dialog box. The
following list explains the capabilities of each built-in step property:

General Tab
• Preconditions—Set this property to specify the conditions that must

be True for TestStand to execute the step during the normal flow of
execution in a sequence.

Run Options Tab
• Load/Unload Options—Set this property to control when TestStand

loads and unloads the code modules or subsequences that are invoked
by each step.

• Run Mode—Set this property to specify whether TestStand skips a
step or forces the step to pass or fail without executing the step’s code
module.

• Record Results—Set this property to specify whether TestStand
collects the results for this step. Refer to the Result Collection section
of Chapter 3, Executions, for more information.

• Step Failure Causes Sequence Failure—Set this property to specify
whether TestStand sets the status of the sequence to Failed when the
status of the step is Failed.

• Ignore Run-Time Errors—Set this property to specify whether
TestStand continues execution normally after the step even though
a run-time error occurs in the step.

Post Actions Tab
• Post Actions—Set this property to execute other sequences or jump to

other steps after executing the step, depending on the pass/fail status of
the step or any custom condition.

Loop Options Tab
• Loop—Set this property to cause a single step to execute multiple

times before executing the next step. You can specify the conditions
under which to terminate the loop. You can also specify whether to
collect results for each loop iteration, for the loop as a whole, or
for both.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-4 ni.com

Expressions Tab
• Pre-Expressions—Set this property to specify an expression to

evaluate before executing the step’s code module.

• Post-Expressions—Set this property to specify an expression to
evaluate after executing the step’s code module.

• Status Expression—Set this property to specify an expression that
determines the value of the status property of the step.

Synchronization Tab
• Synchronization—Set this property to specify whether a step should

block another instance of the step from executing at the same time in a
different thread.

Switching Tab
• Switching—Set this property to specify whether TestStand performs

any switching operations when the step executes.

Use the Step Properties dialog box to modify the values of the built-in step
properties. You can usually modify the values of custom step properties
using a dialog box specific to the step type. If the step type does not have a
dialog box for the custom properties, select View Contents from the step’s
context menu to view the custom properties for that step. Although code
modules usually do not modify the values of the built-in step properties at
run time, they often modify and read the values of the custom step
properties when determining the pass/fail status.

Refer to the TestStand Help for more information about the Step Properties
dialog box.

Custom Properties That Are Common to All Built-In Step Types
Each step type defines its own set of custom properties. All steps that use
the same step type have the same set of custom properties.

All built-in step types contain the following custom properties:

• Step.Result.Error.Occurred—Boolean flag that indicates whether a
run-time error occurred in the step. TestStand documentation refers to
this property as the error occurred flag.

• Step.Result.Error.Code—Code that describes the error that
occurred.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-5 TestStand Reference Manual

• Step.Result.Error.Msg—Message string that describes the error that
occurred.

• Step.Result.Status—Specifies the status of the last execution of the
step, such as Done, Passed, Failed, Skipped, or Error. TestStand
documentation refers to this property as the step status.

• Step.Result.Common—Placeholder container that you can
customize. To customize the container, modify the CommonResults
standard data type. Refer to the Using Data Types section of
Chapter 12, Standard and Custom Data Types, for more information
about standard TestStand data types.

• Step.Result.ReportText—Contains a message string that TestStand
includes in the report.

Refer to Chapter 5, Module Adapters, for more information about the
property assignments that module adapters automatically perform to and
from step properties.

Step Status, Error Occurred Flag, and Run-Time Errors
The error occurred flag can become True in the following situations:

• A run-time error condition occurs, and the code module or module
adapter sets the value to True.

• An exception occurs in the code module or at any other time during
step execution.

When a step finishes execution and the error occurred flag is True, the
TestStand Engine responds as follows:

• Makes no evaluation of status and post-expressions for a step. Instead,
TestStand sets the step status to Error.

• Evaluates the Ignore Run-Time Errors step property.

– If False, TestStand reports the run-time error to the sequence.

– If True, TestStand continues execution normally after the step.

Before TestStand executes a step, it sets the step status to Running or
Looping. When a step finishes execution and the error occurred flag is
False, the TestStand Engine responds as follows: when the step status is
still Looping or Running, TestStand changes the step status to Done.

The step status becomes Passed or Failed only when a code module,
module adapter, or step type explicitly sets the step status to Passed or
Failed.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-6 ni.com

Refer to Chapter 5, Module Adapters, for more information about the
assignments that module adapters make to and from step properties.

Step Types That You Can Use with Any Module Adapter
TestStand comes with five built-in step types that you can use with any
module adapter: Pass/Fail Test, Numeric Limit Test, Multiple Numeric
Limit Test, String Value Test, and Action. When you insert a step in a
sequence, you must select a module adapter from the Adapter ring control,
which is located on the sequence editor toolbar. TestStand then assigns the
adapter you selected to that step.

The icon for the adapter appears as the icon for the step. The icons for the
different adapters are as follows:

LabVIEW Adapter

LabWindows/CVI Adapter

C/C++ DLL Adapter

.NET Adapter

ActiveX/COM Adapter

HTBasic Adapter

Sequence Adapter

<None>

If you choose the <None> adapter, the step does not call a code module.

Note Once you add a step, you can change the adapter associated with that step in the Step
Properties dialog box for the step.

To specify the code module that the step calls, select Specify Module from
the step context menu or click Specify Module on the General tab on the
Step Properties dialog box. Each step has a Specify Module dialog box that
corresponds to its module adapter. Refer to the TestStand Help for more
information about the Specify Module dialog box for each module adapter.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-7 TestStand Reference Manual

Action
Use Action steps to call code modules that do not perform tests but, instead,
perform actions necessary for testing, such as initializing an instrument.
By default, Action steps do not pass or fail. The step type does not modify
the step status. Therefore, the status for an Action step is Done or Error
unless your code module specifically sets another status for the step or the
step calls a subsequence that fails. When an action uses the Sequence
Adapter to call a subsequence and the subsequence fails, the Sequence
Adapter sets the status of the step to Failed.

The Action step type does not define any additional step properties other
than the custom properties that all steps contain.

Pass/Fail Test
Use a Pass/Fail Test step to call a code module that makes its own pass/fail
determination.

After the code module executes, the Pass/Fail Test step type evaluates the
Step.Result.PassFail property. If Step.Result.PassFail is True, the step type
sets the step status to Passed. If Step.Result.PassFail is False, the step
type sets the step status to Failed.

The following are the different ways that a code module can set the value
of Step.Result.PassFail:

• LabVIEW Adapter—Specify Step.Result.PassFail as the
Value expression for a Boolean output of a VI in the Edit LabVIEW VI
Call dialog box.

• LabWindows/CVI, C/C++ DLL, .NET, ActiveX/COM, or
Sequence Adapter—Pass Step.Result.PassFail as a reference
parameter to a subsequence or code module.

• LabVIEW or LabWindows/CVI Adapter—The LabVIEW and
LabWindows/CVI Adapters update the value of Step.Result.PassFail
automatically after calling legacy code modules. The LabVIEW
Adapter updates the value of Step.Result.PassFail based on the value
of Pass/Fail Flag in the Test Data cluster that the VI returns. The
LabWindows/CVI Adapter updates the value of Step.Result.PassFail
based on the value of the result field of the tTestData parameter that it
passes to the C function.

Refer to Using LabVIEW with TestStand and Using LabWindows/CVI
with TestStand for more information about the assignments that the
module adapters automatically make to and from step properties for
legacy code modules in LabVIEW and LabWindows/CVI.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-8 ni.com

• All Adapters—Use the TestStand API to set the value of
Step.Result.PassFail directly in a code module.

By default, the step type uses the value of the Step.Result.PassFail Boolean
property to determine whether the step passes or fails. To customize the
Boolean expression that determines whether the step passes, select
Edit Pass/Fail Source from the context menu for the step or click
Edit Pass/Fail Source on the Step Properties dialog box.

In addition to the common custom properties, the Pass/Fail Test step type
defines the following step properties:

• Step.Result.PassFail—Specifies the Boolean pass/fail flag. Pass is
True, fail is False. Usually, you set this value in the code module or
with a custom pass/fail source expression.

• Step.InBuf—Specifies an arbitrary string that the LabVIEW and
LabWindows/CVI Adapters pass to the test in the Input Buffer
control or tTestData structure of legacy code modules.

This property exists to maintain compatibility with previous test
executives. Usually, code modules you develop for TestStand receive
data as input parameters or access data as properties using the
TestStand API.

• Step.DataSource—Specifies the Boolean expression that the step
uses to set the value of Step.Result.PassFail. The default value of the
expression is "Step.Result.PassFail", which has the effect of
using the value that the code module sets.

You can customize this expression if you do not want to set the value
of Step.Result.PassFail in the code module. For example, you can set
the data source expression to refer to multiple variables and properties,
such as, RunState.PreviousStep.Result.Numeric *
Locals.Attenuation > 12.

Numeric Limit Test
Use a Numeric Limit Test step to call a code module that returns a single
measurement value. After the code module executes, the Numeric Limit
Test step type compares the measurement value to predefined limits. If the
measurement value is within the bounds of the limits, the step type sets the
step status to Passed. Otherwise, it sets the step status to Failed.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-9 TestStand Reference Manual

A Numeric Limit Test step uses the Step.Result.Numeric property to store
the measurement value. A code module can set the value of
Step.Result.Numeric in the following ways:

• LabVIEW Adapter—Specify Step.Result.Numeric as the Value
expression for a Numeric output of a VI in the Edit LabVIEW VI Call
dialog box.

• LabWindows/CVI, C/C++ DLL, .NET, ActiveX/COM, or
Sequence Adapter—Pass Step.Result.Numeric as a reference
parameter to a code module.

• LabVIEW or LabWindows/CVI Adapter—The LabVIEW and
LabWindows/CVI Adapters update the value of Step.Result.Numeric
automatically after calling legacy code modules. The LabVIEW
Adapter updates the value of Step.Result.Numeric based on the value
of Numeric Measurement in the Test Data cluster that the VI
returns. The LabWindows/CVI Adapter updates the value of
Step.Result.Numeric based on the value of the measurement field of
the tTestData parameter that it passes to the C function.

Refer to Using LabVIEW with TestStand and Using LabWindows/CVI
with TestStand for more information about the assignments that the
module adapters automatically make to and from step properties for
legacy code modules in LabVIEW and LabWindows/CVI.

• All Adapters—Use the TestStand API to set the value of
Step.Result.Numeric directly in a code module.

By default, the step type uses the value of the Step.Result.Numeric property
as the numeric measurement to compare the limits against.

The Numeric Limit Test step type defines the following step properties in
addition to the common custom properties:

• Step.Result.Numeric—Specifies the numeric measurement value.
Usually, you set this value in the code module.

• Step.Limits.High and Step.Limits.Low—Specify the limits for the
comparison expression.

• Step.Comp—Specifies the type of comparison, such as EQ.

• Step.Result.Units—Specifies a label that indicates the unit of
measurement.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-10 ni.com

• Step.InBuf—Specifies an arbitrary string that the LabVIEW and
LabWindows/CVI Adapters pass to the test in the Input Buffer
control or tTestData structure of legacy code modules.

This property exists to maintain compatibility with previous test
executives. Usually, code modules you develop for TestStand receive
data as input parameters or access data as properties using the
TestStand API.

• Step.DataSource—Specifies a numeric expression that the step type
uses to set the value of Step.Result.Numeric. The default value of the
expression is "Step.Result.Numeric", which has the effect of
using the value that the code module sets. You can customize this
expression if you do not want to set the value of Step.Result.Numeric
in the code module.

You can use a Numeric Limit Test without a code module. This practice is
useful when you want to limit-check a value that you already have acquired.
To set up this limit-check, select <None> as the module adapter before you
insert the step in the sequence, and configure Step.DataSource to
specify the value that you have already acquired.

For more information about the Edit Numeric Limit Test dialog box,
refer to the TestStand Help.

Multiple Numeric Limit Test
Use the Multiple Numeric Limit Test to limit check a set of related
measurements. Although you can use several Numeric Limit Test steps to
limit test a set of related measurements, it can be easier to use the Multiple
Numeric Limit Test step type to check limits for multiple measurements in
a single step.

The Multiple Numeric Limit Test allows you to test limits for any number
of measurements. Each measurement can have independent limits, units,
display formats, data sources, and comparison types. A Multiple Numeric
Limit Test step passes if all of its measurements pass. Configure each
measurement the same way you configure an individual Numeric Limit
Test step. Refer to the TestStand Help for more information about the
Multiple Numeric Limit Test step and the Edit Multiple Numeric Limit Test
dialog box.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-11 TestStand Reference Manual

The Multiple Numeric Limit Test step type defines the following step
properties in addition to the common custom properties:

• Step.Result.Measurement—An array that stores the measurements
you configure for the step. Each element of the measurement array is
an instance of the NI_LimitMeasurement data type. The
NI_LimitMeasurement type defines the following fields:

– Limits.High and Limits.Low—Specify the limits to which the
step compares the measurement value.

– Units—Specifies a label that describes the measurement units for
the limits and the measurement value.

– Comp—Specifies the type of comparison, such as EQ.

– Data—Stores the numeric measurement value. The step obtains
this value from the corresponding element in Step.NumericArray
or from the data source you specify.

– Status—Stores the result of the comparison of the measurement
value with the limits. The result is either Passed or Failed.

• Step.DataSource—Specifies an expression that identifies the numeric
array that provides the data values for all measurements when you do
not use a separate data source for each measurement.

• Step.NumericArray—Provides a numeric array that is the default
data source that Step.DataSource specifies.

• Step.UseIndividualDataSources—Specifies whether the step stores
separate data source expressions for each measurement in the
Step.DataSourceArray. If this property is False, the step obtains the
data values for each measurement from the numeric array that the
Step.DataSource property specifies.

• Step.DataSourceArray—Specifies a data source for each
measurement element in the measurement array.

String Value Test
Use a String Value Test step to call a code module that returns a string
value. After the code module executes, the String Value Test step type
compares the string that the step obtains to the string that the step expects
to receive. If the string that the step obtains matches the string that it
expects, the step type sets the step status to Passed. Otherwise, it sets the
step status to Failed.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-12 ni.com

A String Value Test step always uses the Step.Result.String property
to store the string value. A code module can directly set the value of
Step.Result.String in the following ways:

• LabVIEW Adapter—Specify Step.Result.String as the Value
expression for a Numeric output of a VI in the Edit LabVIEW VI Call
dialog box.

• LabWindows/CVI, C/C++ DLL, .NET, ActiveX/COM, or
Sequence Adapter—Pass Step.Result.String as a reference
parameter to a code module.

LabVIEW or LabWindows/CVI Adapter—The LabVIEW and
LabWindows/CVI Adapters update the value of Step.Result.String
automatically, after calling legacy code modules. The LabVIEW
Adapter updates the value of Step.Result.String, based on the value of
String Measurement in the Test Data cluster that the VI returns. The
LabWindows/CVI Adapter updates the value of Step.Result.String,
based on the value of the stringMeasurement field of the tTestData
parameter that it passes to the C function.

Refer to Using LabVIEW with TestStand and Using LabWindows/CVI
with TestStand for more information about the assignments that the
module adapters automatically make to and from step properties for
legacy code modules in LabVIEW and LabWindows/CVI.

• All Adapters—Use the TestStand API to set the value of
Step.Result.String directly in a code module.

By default, the step type uses the value of the Step.Result.String property
as the string value to compare the limits against.

Refer to the TestStand Help for more information about the String Value
Test step and the Edit String Value Test dialog box.

In addition to the common custom properties, the String Value Test step
type defines the following step properties:

• Step.Result.String—Specifies the string value. Usually, you set this
value in the code module.

• Step.Limits.String—Specifies the expected string for the string
comparison.

• Step.Comp—Specifies the type of comparison, such as Ignore Case.

• Step.InBuf—Specifies an arbitrary string that the LabVIEW and
LabWindows/CVI Adapters pass to the test in the Input Buffer control
or tTestData structure of legacy code modules.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-13 TestStand Reference Manual

This property exists to maintain compatibility with previous test
executives. Usually, code modules you develop for TestStand receive
data as input parameters or access data as properties using the
TestStand API.

• Step.DataSource—Specifies a string expression that the step type
uses to set the value of Step.Result.String. The default value of the
expression is Step.Result.String, which has the effect of using the
value that the code module sets. You can customize this expression if
you do not want to set the value of Step.Result.String in the code
module.

You can use a String Value Test step without a code module. This is useful
to test a string that you have already acquired. To set up this test, select
<None> as the module adapter before you insert the step in the sequence,
and configure Step.DataSource to specify the string you already have
acquired.

Step Types That Work With a Specific Module Adapter
This section describes step types that work with a specific module adapter.

Sequence Call
Use a Sequence Call step to call another sequence in the current sequence
file or in another sequence file. A Sequence Call step always uses the
Sequence Adapter.

You can use the Sequence Adapter with other step types, such as the
Pass/Fail Test or the Numeric Limit Test. Using a Sequence Call step is the
same as using an Action step with the Sequence Adapter, except that the
Sequence Call step type sets the step status to Passed rather than Done
when the subsequence succeeds. If the sequence fails, the Sequence
Adapter sets the Sequence Call step status to Failed. A sequence fails if
the status for a step in the sequence is Failed and you have enabled the
Step Failure Causes Sequence Failure option on the Run Options tab on the
Step Properties dialog box. If a run-time error occurs in the subsequence,
the Sequence Adapter sets the step status to Error.

Note You can enable or disable the Step Failure Causes Sequence Failure option on the
Run Options tab on the Step Properties dialog box.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-14 ni.com

Refer to the TestStand Help for more information about using the Step
Properties dialog box for the Sequence Adapter.

The Sequence Call step type does not define any additional step properties
other than the custom properties that are common to all steps.

TestStand adds the following properties to the results for Sequence Call
steps that are configured to run the sequence in a new thread or execution.
These properties are not subproperties of the Result property for the
Sequence Call step type.

• AsyncMode—Set to True if the Sequence Call step ran the sequence
in a new thread. It is set to False if the Sequence Call step ran the
sequence in a new execution.

• AsyncID—Contains the value of the ID property of the thread or
execution running the sequence.

Note By default, the Sequence Adapter is hidden in the Adapter ring control. To enable it,
select Configure»Adapters from the TestStand menu bar and remove the check from the
checkbox in the Hidden column.

Step Types That Do Not Use Module Adapters
This section describes step types that do not use module adapters. When
you create an instance of one of these step types, you only use the Edit
<Step Name> dialog box, which you access through the step’s context
menu, to configure the step. You do not specify a code module.

Statement
Use Statement steps to execute expressions. For example, you can use a
Statement step to increment the value of a local variable in a sequence.

By default, Statement steps do not pass or fail. If the step cannot evaluate
the expression or if the expression sets Step.Result.Error.Occurred to True,
TestStand sets the step status to Error. Otherwise, it sets the step status
to Done.

Refer to the TestStand Help for more information about the Edit Statement
Step dialog box.

The Statement step type does not define any additional step properties other
than the custom properties that are common to all steps.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-15 TestStand Reference Manual

Label
Use a Label step as the target for a Goto step. Label steps allows you to
rearrange or delete other steps in a sequence without having to change the
specification of targets in Goto steps.

Label steps do not pass or fail, and by default do not record results. After a
Label step executes, the TestStand Engine sets the step status to Done or
Error. You can edit a Label step to specify a description that appears next
to the Label step name in the sequence editor.

In addition to the common custom properties, the Label step type defines
one step property:

• Description—Specifies a string that appears next to the step name in
the sequence editor.

Goto
Use Goto steps to set the next step that the TestStand Engine executes. You
usually use a Label Step as the target of a Goto step. Use of a Label Step
allows you to rearrange or delete other steps in a sequence without having
to change the specification of targets in Goto steps.

Refer to the TestStand Help for more information about the Edit Goto Step
dialog box.

Message Popup
Use Message Popup steps to display messages to the operator and to
receive response strings from the operator. For example, you can use a
Message Popup step to warn the operator when a calibration routine fails.

By default, Message Popup steps do not pass or fail. After a step executes,
TestStand sets the step status to Done or Error.

Refer to the TestStand Help for more information about the Configure
Message Popup Step dialog box.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-16 ni.com

In addition to the common custom properties, the Message Popup step type
defines the following step properties:

• Step.Result.ButtonHit—Contains the one-based index of the button
that you select.

• Step.Result.Response—Contains the response text that the you enter.

• Step.TitleExpr—Contains the expression for the string that appears as
the title of the message popup dialog box.

• Step.MessageExpr—Contains the expression for the string that
appears as the text message in the message popup dialog box.

• Step.Button1Label, Button2Label, Button3Label, Button4Label,
Button5Label, and Button6Label—Specify the expression for the
label text for each button.

• CenterDialog—Specifies that the message popup dialog box appears
in the center of the screen.

• Position.Top and Position.Left—Specify the location of the message
popup dialog box when CenterDialog is False.

• Modal—Specifies whether the message popup dialog box is a modal
dialog box.

• Step.ShowResponse—Enables the response text box control in the
message popup dialog box.

• Step.MaxResponseLength—Specifies the maximum number of
characters that the operator can enter in the response text box control.

• Step.DefaultResponse—Contains the initial text string that the step
displays in the response text box control.

• Step.ButtonLocation—Specifies whether to display the buttons on
the bottom or side of the message popup dialog box.

• Step.ActiveCtrl—Identifies one of the six buttons or the input string
as the active control.

• Step.DefaultButton—Specifies which button, if any, uses <Enter> as
its shortcut key.

• Step.CancelButton—Specifies which button, if any, uses <Esc> as its
shortcut key.

• Step.TimerButton—Specifies the index of the button that activates
automatically after a timeout elapses. A value of zero indicates that no
timeout occurs.

• Step.TimeToWait—Specifies the number of seconds before the
button that Step.TimerButton specifies activates.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-17 TestStand Reference Manual

Call Executable
Use Call Executable steps to launch an application or run a system
command. For example, you can use a Call Executable step to call a system
command to copy files to a network drive.

The final status of a Call Executable step depends on whether the step waits
for the executable to exit. If the step does not wait for the executable to exit,
the step type always sets the step status to Done. If a timeout occurs while
the step is waiting for the executable to exit, the step type sets the status to
Error. If the step waits for the executable to exit and a timeout does not
occur, the step type sets the step status to Done, Passed, or Failed,
depending on the status action you specify in the Exit Code Status Action
ring control on the Configure Call Executable dialog box for that step.
If you set the Exit Code Status Action ring control to No Action, the step
type always sets the step status to Done. Otherwise, you can choose to set
the step status to Passed or Failed based on whether the exit code is
equal to zero, not equal to zero, greater than zero, or less than zero.

Refer to the TestStand Help for more information about the Configure Call
Executable dialog box.

In addition to the common custom properties, the Call Executable step type
defines the following step properties:

• Step.Result.ExitCode—Contains the exit code that the executable
returns.

• Step.Executable—Specifies the pathname of the executable to
launch.

• Step.Arguments—Specifies the expression for the argument string
that the step passes to the executable.

• Step.WaitCondition—Specifies whether the step waits for the
executable to exit before completing.

• Step.TimeToWait—Specifies the number of seconds to wait for the
executable to exit.

• Step.ProcessHandle—Contains the Windows process handle for the
executable.

• Step.InitialWindowState—Specifies whether the executable is
initially active, not active, hidden, normal, minimized, or maximized.

• Step.TerminateOnAbort—Specifies whether to terminate the
executable process when the execution terminates or aborts.

• Step.ExitCodeStatusAction—Specifies whether to set the step status
using the exit code that the executable returns.

Chapter 4 Built-In Step Types

TestStand Reference Manual 4-18 ni.com

Property Loader
Refer to Appendix D, Database Step Types, for more information about the
Property Loader step. Refer to the TestStand Help for more information
about the Edit Property Loader dialog box.

© National Instruments Corporation 5-1 TestStand Reference Manual

5
Module Adapters

This chapter describes the TestStand module adapters.

Overview
The TestStand Engine uses a module adapter to invoke the code in a code
module, which is called from a TestStand sequence. Each module adapter
supports one or more specific types of code modules, which include
LabVIEW VIs; LabWindows/CVI functions in source files, object files, or
library modules that you create in LabWindows/CVI or other compilers;
C/C++ functions in DLLs; .NET assemblies; ActiveX automation servers;
and HTBasic subroutines. A module adapter knows how to load and call a
code module, how to pass parameters to a code module, and how to return
values and status from a code module.

When you edit a step that uses a module adapter, TestStand relies on the
adapter to display the Specify Module dialog box, in which you specify the
code module for the step and also specify any parameters to pass when you
invoke the code module.

TestStand stores the name and location of the code module, the parameter
list, and any additional options as properties of the step. TestStand hides
most of these adapter-specific step properties.

In some cases, if the module adapter is specific to an ADE, the adapter
knows how to open the ADE, how to create source code for a new code
module in the ADE, and how to display the source for an existing code
module in the ADE. Some adapters support stepping into the source code
in the ADE while you execute the step from the TestStand Sequence Editor
or Operator Interfaces.

Configuring Adapters
You can configure most of the module adapters by selecting Configure»
Adapters from the sequence editor menu. Refer to the TestStand Help for
more information about configuring adapters.

Chapter 5 Module Adapters

TestStand Reference Manual 5-2 ni.com

Source Code Templates
If you are using the LabVIEW, LabWindows/CVI, C/C++ DLL, .NET, or
HTBasic Adapters, you can use a code template to generate the source code
shell for a code module. The template files are different for each step type
and each module adapter. A step type can define multiple code templates
for a particular adapter/step combination.

TestStand includes default templates for each of the built-in step types. You
can also create additional templates for built-in step types when you create
a new step type. Refer to Chapter 13, Creating Custom Step Types, for
more information about creating code templates for step types.

LabVIEW Adapter
The LabVIEW Adapter allows you to call LabVIEW VIs with a variety of
connector panes. Refer to the Using LabVIEW with TestStand manual for
complete information about using the LabVIEW Adapter.

LabWindows/CVI Adapter
The LabWindows/CVI Adapter allows you to call C functions with a
variety of parameter types. The function can exist in an object file, library
file, or DLL. The function can also exist in a source file that is located in
the project that you are currently using in the LabWindows/CVI
development environment. Refer to the Using LabWindows/CVI with
TestStand manual for complete information about using the
LabWindows/CVI Adapter.

C/C++ DLL Adapter
The C/C++ DLL Adapter allows you to call C functions and C++ methods
in a DLL with a variety of parameter types. In C++ DLLs, the methods can
be either global static methods or static class methods. You can create the
DLL code module with Microsoft Visual Studio .NET or any other ADE
that creates a C/C++ -callable DLL.

Additionally, if you have National Instruments Measurement Studio 7.0
(or later) Enterprise Edition and Visual Studio .NET 2003 or later installed,
you can create and edit C++ code modules directly from TestStand.

Chapter 5 Module Adapters

© National Instruments Corporation 5-3 TestStand Reference Manual

Note National Instruments recommends using the LabWindows/CVI Adapter to call
functions in DLLs that you create using LabWindows/CVI. The LabWindows/CVI
Adapter provides full integration with the LabWindows/CVI ADE for code generation
and debugging.

Specifying a C/C++ DLL Adapter Module
The Specify Module dialog box for the C/C++ DLL Adapter is called the
Edit C/C++ DLL Call dialog box. The Edit C/C++ DLL Call dialog box
contains a Module tab and a Source Code tab.

Refer to the TestStand Help for more information about the
Edit C/C++ DLL Call dialog box.

Debugging DLLs
To debug a DLL, first create the DLL with debugging enabled in your
ADE. Then, launch the sequence editor or operator interface from
LabWindows/CVI or Visual Studio, or attach to the sequence editor or
operator interface process from your ADE. In LabWindows/CVI, select
Run»Select External Process in the Project window to identify the
executable for the sequence editor or operator interface. Then, use the Run
command to start the executable.

Note If you use LabWindows/CVI or Visual Studio .NET to debug a DLL in a TestStand
process, be sure to save your sequence files before you stop debugging. If you stop
debugging, the ADE will terminate the TestStand process prematurely.

If you are debugging a DLL in the Test Stand process using
LabWindows/CVI or Visual Studio .NET 2003 or later and you have
Measurement Studio 7.0 (or later) Enterprise Edition installed, you can
click Step Into in TestStand on a step that calls into the DLL to suspend
the ADE at the first statement in the DLL function.

Table 5-1 describes your options for stepping out of a LabWindows/CVI
or Visual Studio .NET DLL function that you are debugging.

Chapter 5 Module Adapters

TestStand Reference Manual 5-4 ni.com

Refer to your LabWindows/CVI and Visual Studio .NET documentation
for more information about debugging DLLs in an external process.

Debugging LabVIEW DLLs You Call with the C/C++ DLL Adapter
You must use the LabVIEW Operator Interface to debug any VIs that you
build into a DLL using LabVIEW 6.1 or later. First, open the operator
interface in the LabVIEW development environment. Before executing the
operator interface, open the VI that represents the DLL function to debug
and place a break point in the diagram of this VI. Next, use the LabVIEW
Operator Interface to load and execute the sequence file that calls the
LabVIEW DLL. When LabVIEW loads the DLL that the step calls,
LabVIEW uses the VI in memory instead of the VI in the DLL. Then, when
the step calls the DLL function, LabVIEW suspends at the breakpoint that
you set in the VI.

Using MFC in a DLL
The Microsoft Foundation Class (MFC) Library places several
requirements on DLLs that use the DLL version of the MFC run-time
library. If you call any of these DLLs, verify that the DLL meets these
requirements. Also, if the DLL uses resources such as dialog boxes, verify
that the AFX_MANAGE_STATE macro appears at the beginning of the
function body of each function that you call. Refer to your MFC
documentation for more information about calling DLLs.

Table 5-1. Options for Stepping Out of DLL Functions

ADE Command for
Stepping Out Result in TestStand

Finish Function or Step Out Execution of the function. When you use this command on the
last function in the call stack, TestStand suspends execution on
the next step in the sequence.

Step Into or Step Over When you use this command on the last executable statement of
the function, TestStand suspends execution on the next step in
the sequence.

If the Step Over command executes on an END step in a
Pre-Step callback, TestStand attempts to Step Into the code
module.

Continue TestStand does not suspend execution when the function call
returns.

Chapter 5 Module Adapters

© National Instruments Corporation 5-5 TestStand Reference Manual

Loading Subordinate DLLs
TestStand directly loads and runs the DLLs that you specify in the Specify
Module dialog box for the C/C++ DLL Adapter. Since your code modules
most likely call subsidiary DLLs, such as instrument drivers, ensure that
the operating system can find and load those subsidiary DLLs.

The operating system searches for the DLLs using the following search
directory precedence:

1. The directory in which the application resides.

2. The current working directory.

3. The Windows System directory.

4. The Windows directory.

5. The directories listed in the PATH environment variable.

Creating Type Libraries
A type library exposes the function names and arguments of a DLL or
COM object. Typically, type libraries are part of the DLL itself. TestStand
does not require you to create a DLL with a built-in type library. However,
if you include a type library in your DLL, the C/C++ DLL Adapter can use
the information in the type library to obtain the parameter list information.

Refer to the NI Developer Zone online at ni.com/zone for additional
information about building type libraries.

.NET Adapter
The .NET Adapter allows you to call .NET assemblies written in any
.NET-compliant language, such as C# or Microsoft Visual Basic .NET.

Note You must have the .NET Framework 1.1 or later installed in order to use the
.NET Adapter.

Additionally, if you have Measurement Studio 7.0 (or later) Enterprise
Edition and Visual Studio .NET 2003 or later installed, you can create and
edit .NET code modules directly from TestStand.

Within the .NET assembly, you can call methods and access properties
or fields on a class or struct. With an instance of a class that was either
previously created and stored in an object reference variable or created

Chapter 5 Module Adapters

TestStand Reference Manual 5-6 ni.com

in the calling step, you can call or access all non-static public members.
An instance is not required to call or access static public members.

When calling a struct, the definition can be stored in a variable of a data
type that is mapped to the struct members or initialized in the calling step.

Refer to the TestStand Help for more information about configuring calls to
.NET assemblies.

Debugging .NET Assemblies
To debug a .NET assembly, first create the assembly with debugging
enabled in your ADE. Then, launch the sequence editor or operator
interface from Visual Studio .NET or attach to the sequence editor or
operator interface process from Visual Studio .NET.

Note When you debug an assembly in a TestStand process and you stop debugging, Visual
Studio .NET terminates the TestStand process prematurely. Save your sequence files and
workspace before you stop debugging and terminate the process.

If you are debugging a .NET assembly in the Test Stand process using
Visual Studio .NET 2003 or later and you have Measurement Studio 7.0
(or later) Enterprise Edition installed, you can click Step Into in TestSTand
on a step that calls into the assembly to suspend Visual Studio .NET at the
first statement in the assembly method or property.

Table 5-2 describes your options for stepping out of a Visual Studio .NET
assembly that you are debugging.

Refer to your Microsoft Visual Studio .NET documentation for more
information about debugging assemblies in an external process.

Table 5-2. Options for Stepping Out of Assemblies in Microsoft Visual Studio .NET

Visual Studio .NET
Command for Stepping Out Result in TestStand

Step Out Executes the function. When you use this command on the last
function in the call stack, TestStand suspends execution on the
next step in the sequence.

Step Into or Step Over Suspends execution on the next step in the sequence when you
use this command on the last executable statement of the
function.

Continue Does not suspend execution when the function call returns.

Chapter 5 Module Adapters

© National Instruments Corporation 5-7 TestStand Reference Manual

Note If you are using LabWindows/CVI to debug a DLL in the TestStand process, you
cannot debug a .NET assembly at the same time. If you are using Visual Studio .NET to
debug an assembly in TestStand and you want to use LabWindows/CVI to debug code
modules at the same time, you must configure the LabWindows/CVI Adapter to execute
the steps out-of-process.

Note When you debug a TestStand process with Visual Studio .NET, TestStand will not
unload assemblies when you select File»Unload All Modules.

Configuring the .NET Adapter
Use the .NET Adapter Configuration dialog box to configure the
.NET Adapter. Refer to the TestStand Help for more information about
the .NET Adapter Configuration dialog box.

Numeric Parameters
The .NET Adapter supports most .NET numeric data types. TestStand does
not support 96-bit floating point precision numbers. If you use the Decimal
data type, it will be stored in a double and could lose precision.

Enumeration Parameters
Use the ring control in the Value column of the parameter control on the
Specify Module dialog box to select one of the enumerations or enter an
expression for a number or string. If the .NET Adapter enumeration uses
the Flag attribute, you can pass multiple values of the bit field by separating
each element in a string, such as "enum 1, enum 2".

Struct Parameters
You can pass variables and properties that you create with named data
types to an assembly that accept structs. When you create or edit a data
type, you specify whether the type can be a struct argument and how its
properties map to the struct. The mapping is done between the struct
element name and the name of a property of the data type. The mapping
eliminates the need to specify an argument for each element of the struct.
To create a new data type and map it directly to the struct, click the Data
Type button in the Type column of the Specify Module dialog box, which
launches the Create Custom Data Type From Struct dialog box.

The struct mapping of a TestStand variable will be automatically refreshed
before it is used. If there is no mapping for a struct element, the argument
for this element will have a question mark (?) in the Specify Module dialog

Chapter 5 Module Adapters

TestStand Reference Manual 5-8 ni.com

box. You must edit the named data type to map the struct element to a
property of the type.

Array Parameters
You can specify an array that contains elements of any type. For numeric
arrays, TestStand reformats the contents of the numeric array argument into
a temporary array that contains elements that have the data type the
assembly expects. For arrays of structs, you must specify an array of
containers. The data type of the array of containers must have struct passing
enabled. It must also match the struct structure expected by the arrays of
structs.

For inputs, the number of dimensions in the TestStand array must match the
number of dimensions in the .NET array. For outputs, the TestStand array
resizes to match the .NET array.

For small arrays, you can specify an argument for each element of the array.
To add elements to the array, click the <+> sign in the Type column.
TestStand inserts a new element below the selected element. Click the <->
sign to delete the selected array element.

ActiveX/COM Adapter
The ActiveX/COM Adapter allows you to create objects, call methods, and
access properties of ActiveX/COM objects. When you create an object, you
can assign the object reference to a variable or property for later use in other
ActiveX/COM Adapter steps. When you call methods and access
properties, you can specify an expression for each input and output
parameter.

Refer to the TestStand Help for more information about configuring calls to
ActiveX/COM servers.

Running and Debugging ActiveX Automation Servers
TestStand does not step into your ActiveX/COM server. To debug an
out-of-process executable server, launch the server in the ADE in which it
was created and then independently launch the sequence editor or operator
interface. If you want to debug an in-process DLL server, launch the
sequence editor or operator interface from the ADE.

When you work in Microsoft Visual Basic, place breakpoints in your
automation server source code and select Run»Start with Full Compile.

Chapter 5 Module Adapters

© National Instruments Corporation 5-9 TestStand Reference Manual

In TestStand, run the sequence that calls into your automation server to
cause the execution to automatically suspend at the breakpoint that you set
in Visual Basic. Refer to your ADE documentation for more information
about debugging ActiveX automation servers.

Configuring the ActiveX/COM Adapter
Use the ActiveX/COM Adapter Configuration dialog box to configure the
ActiveX/COM Adapter. Refer to the TestStand Help for more information
about the ActiveX/COM Adapter Configuration dialog box.

Using ActiveX/COM Servers with TestStand
This section discusses using ActiveX/COM servers with TestStand.

Registering and Unregistering a Server
To register an ActiveX/COM server DLL, call the Windows executable
regsvr32.exe, using the DLL pathname as the command-line argument.
To unregister the DLL server, call regsvr32.exe using /u and the
DLL pathname as the command-line argument.

To register an ActiveX/COM server executable, run the server executable
with the /RegServer command-line argument. To unregister an
executable server, call the executable with the /UnregServer
command-line argument.

Visual Basic does not automatically register a server when you build the
server DLL or executable. You must manually register the server as
outlined previously in this section. Visual Basic temporarily registers a
server when you run the server project inside the Visual Basic ADE. When
you complete the debugging session, Visual Basic unregisters that server.

Compatibility Options for Visual Basic
If you are developing an automation server in an ADE that does not give
you direct control over IDs, you must ensure that the ActiveX/COM
Adapter can find the server identifiers or the names defined in the
TestStand step. When you rebuild an ActiveX/COM server in Visual Basic,
you can select one of three compatibility options. Depending on the level
of compatibility and the changes you make to a project, Visual Basic
compiles an appropriate new server, which can contain new identifiers.

Chapter 5 Module Adapters

TestStand Reference Manual 5-10 ni.com

To specify the level of compatibility, select Project Properties from the
Project menu in Visual Basic. In the Project Properties dialog box, use the
radio buttons in the Version Compatibility section on the Components tab
to select the level of compatibility.

Visual Basic offers the following compatibility options:

• No compatibility—Maintains no compatibility between the new
server and a previously compiled server. Visual Basic generates new
unique identifiers for the server, which prevents any previously
compiled client application that uses early binding from working
properly with the server.

Because Visual Basic changes the IDs that it uses to uniquely identify
the type information of the server, TestStand cannot properly update an
ActiveX/COM Adapter step, regardless of whether you configure the
ActiveX/COM Adapter for early or late binding.

Note National Instruments does not recommend the use of the No compatibility setting
with your TestStand projects.

• Project compatibility—Causes Visual Basic to maintain the
ID assignments that it uses to uniquely identify the type information
for the server. Use this option when you have multiple projects under
development within Visual Basic. The setting is not meant to assure
compatibility with client applications that were not compiled in Visual
Basic or projects that use early binding.

Note Only use the Project compatibility option after you have built the server DLL or
executable.

When you use this option to rebuild a server, TestStand can then use
the type information to determine the IDs associated with the names
stored in the step.

Note National Instruments recommends that you configure the ActiveX/COM Adapter to
use late binding when you create a server using the Project compatibility option.

• Binary compatibility—Instructs Visual Basic to maintain the current
ID assignments that it uses to identify objects and methods. When you
use this option, Visual Basic attempts to maintain compatibility with
compiled client applications that use early binding. If you remove a
member from the server, Visual Basic can no longer maintain binary
compatibility.

Chapter 5 Module Adapters

© National Instruments Corporation 5-11 TestStand Reference Manual

Note Use the Binary compatibility option only after you have built the server DLL or
executable for the first time.

When you use this option to rebuild a server, TestStand can use the IDs
stored in the step without accessing the type information at run time.
National Instruments recommends that you configure the
ActiveX/COM Adapter to use early binding when you create a server
with this option.

National Instruments makes the following additional recommendations
regarding the use of the Visual Basic ActiveX/COM server in conjunction
with development of sequences within TestStand. These approaches ensure
that the ActiveX/COM Adapter can properly find and invoke the server
after you recompile the server.

• Use the following approach while you develop and debug sequences:

– Use the Project compatibility option to rebuild your server in
Visual Basic.

– Configure the ActiveX/COM Adapter to use late binding.

• Use the following approach when the interface for the server is
completely developed and debugged:

– Use the Binary compatibility option to rebuild your server in
Visual Basic.

– Select Tools»Update Automation Identifiers in the TestStand
Sequence Editor to assign the new server identifiers to the steps.

– After you properly assign the new server identifiers to the steps,
you can enable the ActiveX/COM Adapter to use early binding.

For more information about creating and debugging Visual Basic
ActiveX/COM servers, refer to your Visual Basic documentation and to the
following Internet document:

Ivo Salmre, “Building, Versioning, and Maintaining Visual Basic
Components,” Microsoft Developer Network, Microsoft Corporation,
February 1998.

Chapter 5 Module Adapters

TestStand Reference Manual 5-12 ni.com

HTBasic Adapter
The HTBasic Adapter allows you to call HTBasic subroutines without
passing parameters directly to a subroutine. Instead, the subroutine
exchanges data by calling get or set subroutines contained in an HTBasic
CSUB. These subroutines use the TestStand API to get data from and set
data in TestStand. For more information about using these subroutines,
refer to the Passing Data To and Returning Data From a Subroutine
section of this chapter.

Specifying an HTBasic Adapter Module
The Specify Module dialog box for the HTBasic Adapter is called the Edit
HTBasic Subroutine Call dialog box. The dialog box contains controls to
specify the subroutine file path, subroutine name, and other options. Refer
to the TestStand Help for more information about the Edit HTBasic
Subroutine Call dialog box.

Debugging an HTBasic Adapter Module
To debug an HTBasic subroutine while executing the subroutine from
TestStand, you must configure the adapter to use the HTBasic development
environment as the HTBasic server.

If you select Debug»Step Into in TestStand when an execution is currently
suspended on a step that calls an HTBasic subroutine, HTBasic displays the
HTBasic server window and pauses at the call of the subroutine. When
suspended, press <Alt-F1> to single step through the subroutine. When
you have finished debugging a particular subroutine, click Continue to
resume execution and return control to TestStand. After you step out of the
subroutine, TestStand suspends execution on the next step in the sequence.

For more information about debugging HTBasic programs, refer to your
HTBasic documentation.

Passing Data To and Returning Data From a Subroutine
TestStand provides a library of CSUB routines that use the TestStand API
to access TestStand variables and properties from an HTBasic subroutine.
For more information about these subroutines, refer to the TestStand Help.

Chapter 5 Module Adapters

© National Instruments Corporation 5-13 TestStand Reference Manual

Sequence Adapter
The Sequence Adapter allows you to pass parameters when you make a call
to a subsequence. You can call a subsequence in the current sequence file
or in another sequence file, and you can make recursive sequence calls.
For subsequence parameters, you can specify a literal value, pass a variable
or property by reference or by value, or use the default value that the
subsequence defines for the parameter.

You can use the Sequence Adapter from any step type that can use module
adapters, such as the Pass/Fail Test or the Numeric Limit Test. This is
similar to using the Sequence Call built-in step type, except that the
Sequence Call step sets the step status to Passed instead of Done if no
failure or error occurs.

After the Sequence Call step executes, the Sequence Adapter may set the
step status. If the sequence that the step calls fails, the adapter sets the step
status to Failed. If no run-time error occurs, the adapter does not set the
step status. The resulting status is Done or Passed, depending on the type
of step. If a run-time error occurs in the sequence, the adapter sets the step
status to Error and sets the Result.Error.Occurred property to True. The
adapter also sets the Result.Error.Code and Result.Error.Msg properties to
the values of the same properties in the subsequence step that generated the
run-time error.

You can define the parameters for a sequence on the Parameters tab in the
Sequence File window, shown in Figure 5-1.

Figure 5-1. Example Sequence Parameters

Chapter 5 Module Adapters

TestStand Reference Manual 5-14 ni.com

The Parameters tab defines each parameter name, its TestStand data type,
its default value, and whether you pass the argument by value or by
reference. For more information about sequence file parameters, refer to
the TestStand Help.

Specifying a Sequence Adapter Module
The Specify Module dialog box for the Sequence Adapter is called the
Edit Sequence Call dialog box. Refer to the TestStand Help for more
information about the Edit Sequence Call dialog box.

Remote Sequence Execution
There are three types of sequence file paths available when you use remote
sequence execution—absolute, relative, and network. Table 5-3 describes
these options.

When you specify a sequence file pathname in the Pathname and Sequence
section of the Edit Sequence Call dialog box and specify Run Sequence on
a Remote Computer in the Multithreading and Remote Execution section
of the same dialog box, TestStand locates the sequence file according to the
type of path, as described in Table 5-3.

When you edit a step in a sequence file on a client machine and you specify
an absolute or relative path for the sequence file the step calls, TestStand
resolves the path for the sequence file on the client machine. When you run
the step on the client machine, TestStand resolves the path for the sequence
file on the server system.

Table 5-3. Path Resolution of Sequence Pathnames for Remotely Executed Steps

Type
of Path

Where Found
When You Edit

Where Found
When You Execute Example

Relative In the TestStand
search paths that
you configure on
the client (local)
machine.

In the TestStand
search paths that you
configure on the server
(remote) machine.

Transmit.seq

Absolute On the client
(local) machine.

On the server (remote)
machine.

C:\Projects\Transmit.seq

Network On the machine
specified in the
network path.

On the machine
specified in the
network path.

\\Remote\Transmit.seq

Chapter 5 Module Adapters

© National Instruments Corporation 5-15 TestStand Reference Manual

Choose one of the following three ways to manage your remote sequence
files for remote execution:

• Add a common pathname to the search paths for the client and the
server so that each resolves to the same relative pathname.

• Duplicate the files on your client and server machine so that the client
edits an identical file to the file that the server runs.

• Use absolute paths that specify a mapped network drive or full network
path so that the file that the client machine edits and the file the server
runs are the same sequence file.

When you execute a remote sequence, you cannot single-step or set
breakpoints in the remote sequence. If you enable tracing, TestStand
updates the status bar with tracing information for the remote sequence.

When a remote sequence executes on a server, the sequence context and
call stack only include the sequences that run on the remote system. If you
want to access properties from the client sequence context, you must pass
the PropertyObjects or their values as parameters to the remote sequence.
You can use the TestStand API to access properties within a property
object.

Setting up TestStand as a Server for Remote Execution
You must properly configure the server on the remote system if you want
TestStand to invoke a sequence on a remote TestStand server host. These
configuration settings include enabling the TestStand server to accept
remote execution requests, registering the server with the operating system,
and configuring Windows system security to allow users to access and
launch the server remotely.

To allow the remote server to accept remote execution requests from a
client machine, enable the Allow Sequence Calls from Remote Machines
to Run on This Machine option, which is located on the Remote
Execution tab on the Station Options dialog box.

A TestStand server is active while the TestStand application
<TestStand>\bin\REngine.exe runs on a remote system. Each
TestStand client communicates with a dedicated version of the remote
engine application.

In Windows 2000/NT/XP, the remote server launches automatically each
time a TestStand client uses the server.

Chapter 5 Module Adapters

TestStand Reference Manual 5-16 ni.com

In Windows 98, you must launch the remote server manually, and only one
client can use the server at a time. You can automatically launch the server
by placing a shortcut to the application in the Startup folder on the server
system.

You can close remote engine applications from your system tray by
enabling the Show the System Tray Icon While the TestStand Remote
System is Active on this Machine option on the Station Options dialog
box for the remote system. This option makes the TestStand icon visible in
the system tray for each instance of the remote engine application. The
tooltip for the icon indicates which computer is connected to the remote
engine. Right-click the TestStand icon to display when the engine was
created or to force the remote engine application to close.

If you do not enable this option, you must close remote engine applications
manually. In Windows 2000/NT/XP, open the Windows Task Manager and
select rengine.exe on the Processes tab and click End Process. In
Windows 98, press <Ctrl-Alt-Del> to launch the Close Programs dialog
box. Then select REngine from the list of active applications and click End
Task.

TestStand automatically registers the server during installation. To
manually register or unregister the server, invoke the executable with
the /RegServer or /UnregServer command-line arguments.

Before a client can communicate with a server, you must configure the
security permissions for that server’s Windows system.

Tip To avoid configuring security permissions, enable the Allow All Users Access From
Remote Machines option on the Station Options dialog box. When you enable this option,
TestStand configures the security permissions for you by adding the name Everyone to the
list of users who have permission to launch the TestStand remote server. When you disable
this option, TestStand removes the name Everyone from the list. Notice that the Allow All
Users Access From Remote Machines option is not available in Windows 98.

Windows XP
For Windows XP, complete the following steps to configure the security
permissions for the server:

1. Log in as a user with administrator privileges.

2. Launch the Component Services window by selecting Start»Settings»
Control Panel»Administrative Tools»Component Services or by
running dcomcnfg from the command line.

Chapter 5 Module Adapters

© National Instruments Corporation 5-17 TestStand Reference Manual

3. In the left pane of the Component Services window, expand the tree
view to show Component Services»Computers»My Computer.

4. Right-click My Computer and select Properties to launch the
My Computer Properties dialog box.

5. On the Default Properties tab on the My Computer Properties dialog
box, verify that the Enable Distributed COM on this computer
option is enabled. Click OK to close the dialog box.

Note Changing the value of the Enable Distributed COM on this computer option
requires you to reboot your computer.

6. In the left pane of the Component Services window, select
My Computer»DCOM Config to display a list of applications in the
right pane.

7. Right-click NI TestStand Remote Engine and select Properties from
the context menu to launch the NI TestStand Remote Engine Properties
dialog box.

8. On the Identity tab on the NI TestStand Remote Engine Properties
dialog box, verify that The interactive user is selected. Click OK to
close the dialog box.

You must give permission to the appropriate users so that they can access
the remote server. You should give access to everyone, but only give launch
permission to appropriate users, since users who have launch permission
are able to access the server. You can set these permissions in one of the
following ways:

• Specify the default security on the Default COM Security tab on the
My Computer Properties dialog box.

• Give individual users access to the server. Use the Security tab on the
NI TestStand Remote Engine Properties dialog box to configure the
permissions for a specific server.

Windows 2000/NT
For Windows 2000/NT, complete the following steps to configure the
security permissions for the server:

1. Log in as a user with administrator privileges.

2. Run dcomcnfg from the command line, which launches the
Distributed COM Configuration Properties dialog box.

3. On the Default Properties tab, verify that the Enable Distributed
COM on this computer option is enabled.

Chapter 5 Module Adapters

TestStand Reference Manual 5-18 ni.com

Note Changing the value of the Enable Distributed COM on this computer option
requires you to reboot your computer.

4. On the Applications tab, select NI TestStand Remote Engine and
then click Properties.

5. On the Identity tab on the NI TestStand Remote Engine Properties
dialog box, verify that the Interactive User option is selected.

You must give permission to the appropriate users so that they can access
the remote server. You should give access permissions to everyone, but only
give launch permission to users who should be able to launch the server.
You can set these permissions in one of the following ways:

• Specify the default security on the Default Security tab on the
Distributed COM Configuration Properties dialog box.

• Give individual users access to the server. On the Applications tab,
select NI TestStand Remote Engine and then click Properties. Use
the Security tab on the TestStand Remote Engine Properties dialog
box to configure the permissions for a specific server.

Windows 98
For Windows 98, complete the following steps to configure the security
permissions for the server:

1. Go to the Access Control tab on the Network Properties dialog box in
the Windows Control Panel, and enable User-level access control.

2. Run dcomcnfg from the command line, which launches the
Distributed COM Configuration Properties dialog box.

3. On the Default Properties tab, verify that the Enable Distributed
COM on this Computer option is enabled.

Note Changing the value of the Enable Distributed COM on this computer option
requires you to reboot your computer.

4. On the Default Security tab, verify that the Enable Remote
Connection option is enabled.

Note Changing the value of the Enable Remote Connection option requires you to
reboot your computer.

Chapter 5 Module Adapters

© National Instruments Corporation 5-19 TestStand Reference Manual

You must give permission to the appropriate users so that they can access
the remote server. You can set these permissions in one of the following
ways:

• Specify the default security on the Default Security tab on the
Distributed COM Configuration Properties dialog box.

• Give individual users access to the server. To grant individual access,
select the server name, NI TestStand Remote Engine, on the
Applications tab and then click Properties. On the Security tab on
the NI TestStand Remote Engine Properties dialog box, add users to a
list for access to the server.

In addition to clients accessing remote servers, there may be some instances
in which TestStand remote servers must access the client machine. For
example, if you pass a property object as an argument to a sequence
running on a TestStand remote server, and that sequence attempts to access
subproperties of the parameter, the remote server must be able to access the
property object on the client machine.

You do not need to configure security permissions for the client if you are
running the TestStand Sequence Editor or any of the TestStand Operator
Interfaces. However, if you write your own operator interface or other
client application that uses the TestStand Engine for remote execution, you
must either configure security permissions for the client application as
described previously for TestStand, or you must add a special registry entry
for the client application that grants access to the client from remote
servers. The registry entry takes the following form, where
yourclient.exe is the name of your client application:

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppID\
yourclient.exe]
"AppID" = "{C31FD07F-DEAC-4962-9BBF-092F0F3BFF3C}"

© National Instruments Corporation 6-1 TestStand Reference Manual

6
Database Logging and Report
Generation

This chapter describes the database and report generation features of
TestStand. This chapter assumes that you have a basic understanding of
database concepts, SQL, and your Database Management System (DBMS)
client software.

Database Concepts
This section summarizes key database concepts that are important for using
databases with TestStand. It also summarizes the key Windows features
TestStand uses to communicate with a DBMS.

Databases and Tables
A database is an organized collection of data. You can store data in and
retrieve data from a database. Although databases vary in how they store
their internal data, most modern DBMSs, also known as database servers,
store data in table form.

Tables contain records, also known as rows. Each row consists of fields,
also known as columns. Every table in a database must have a unique name,
and every column within a table must have a unique name. Each column in
a table has a data type. The available data types vary depending on
the DBMS.

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-2 ni.com

You can use database tables to store many different types of data. Table 6-1
contains columns for the UUT number, a step name, a step result, and a
measurement. The order of the data in the table is not important. Ordering,
grouping, and other manipulations of the data occur when you retrieve the
data from the table.

A row can contain an empty column value, which means that the specific
cell contains a NULL value, also referred to as a SQL Null value.

Use an SQL SELECT command, or query, to retrieve records from a
database. The result of a query is called a record set or SQL statement data.
The data you receive does not necessarily reflect the entire contents of any
particular table in the database. For instance, you can retrieve only selected
columns and rows from one table, or you can retrieve data that is a
combination of the contents of multiple tables. The query defines the
contents and order of the data. You can refer to each column you retrieve
by the name of the column or by a one-based number that refers to the order
of the column in the query.

Table 6-1. Example Database Table

UUT_NUM STEP_NAME RESULT MEAS

20860B456 TEST1 PASS 0.5

20860B456 TEST2 PASS (NULL)

20860B123 TEST1 FAIL 0.1

20860B789 TEST1 PASS 0.3

20860B789 TEST2 PASS (NULL)

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-3 TestStand Reference Manual

Database Sessions
Database operations occur within a database session. A simple session
follows this order:

1. Connect to the database.

2. Open database tables.

3. Fetch data from and store data to the open database tables.

4. Close the database tables.

5. Disconnect from the database.

Microsoft ADO, OLE DB, and ODBC Database Technologies
TestStand uses Microsoft’s ActiveX Data Objects (ADO) as its database
client technology. ADO, which is built on top of the Object Linking and
Embedding Database (OLE DB), is one of several database interface
technologies that Microsoft has integrated into its operating systems.

Applications that use ADO, such as TestStand, use the OLE DB interfaces
indirectly. The OLE DB layer interfaces to databases directly through a
specific OLE DB provider for the DBMS or through a generic Open
Database Connectivity (ODBC) provider, which interfaces to a specific
ODBC driver for the DBMS. Figure 6-1 shows the high-level relationships
between TestStand and components of the Windows database technologies.

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-4 ni.com

Figure 6-1. Microsoft Windows Database Technologies

Refer to the Microsoft Web site, www.microsoft.com/data, for more
information about database technologies for Windows operating systems.

Process Model
Sequence

Database
Logger

ODBC
Drivers

Main
Sequences

Database
Steps

TestStand
Engine

ADO

OLE DB

Flat File
Database

???Access
MDB Files

OLE DB Providers

Access
Provider

SQL Server
Provider

Oracle Server
Provider

ODBC
Provider

Future
Providers

SQL
Server

Oracle
Server

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-5 TestStand Reference Manual

Data Links
Before you can access data from a database within TestStand, you must
provide specific connection information called a data link. In a data link,
you can specify the server on which the data resides, the database or file
that contains the data, the user ID, and the permissions to request when
connecting to the data source.

For example, to connect to a Microsoft SQL Server database, specify the
OLE DB provider for an SQL Server, a server name, a database name,
a user ID, and a password. To connect to a Microsoft Access database,
specify the OLE DB provider for ODBC and an ODBC data source name.
The ODBC data source name specifies which ODBC driver to use, the
database file (.mdb), and an optional user ID and password. You can define
ODBC data source names in the ODBC Administrator in the Windows
Control Panel.

Refer to the Using the ODBC Administrator section of this chapter for more
information about the ODBC Administrator.

A connection string is a string version of the connection information
required to open a session to a database. TestStand allows you to build
a connection string using the Data Link dialog box.

The Data Link dialog box and the information contained in the connection
string vary according to the OLE DB provider. For example, a connection
string for a Microsoft SQL Server database might contain the following:

Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist

Security Info=True;User ID=guest;Initial

Catalog=pubs;Data Source=SERVERCOMPUTER

Complete the following steps to store the contents of a connection string in
a Microsoft Data Link file (.udl):

1. Create a Data Link file by right-clicking in Windows Explorer and
selecting New»Text Document.

2. Change the file extension to .udl.

3. Right-click the new file and select Open to launch the Data Link
Properties dialog box.

Refer to the Using Data Links section of this chapter for more information
about specifying data links. You can also refer to the TestStand Help for
more information about the Data Link Properties dialog box.

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-6 ni.com

Database Logging Implementation
TestStand’s database logging capability is not native to the TestStand
Engine or the TestStand Sequence Editor. The default process model
included with TestStand contains customizable sequences that implement
the logging features. Refer to Appendix A, Process Model Architecture, for
more information about customizing the default process model.

The default process model relies on the automatic result collection
capability of the TestStand Engine to accumulate the raw data that is logged
to a database for each UUT. The engine can automatically collect the
results of each step into a result list for an entire sequence, which contains
the result of each step it runs and the result list of each subsequence call it
makes. The default process model calls the Main sequence in the client
sequence file to test a UUT, so that the result list for the Main sequence
contains the raw data to log to a database for the UUT. Refer to the Result
Collection section of Chapter 3, Executions, for more information about
automatic result collection.

The Test UUTs and Single Pass Execution entry points in the TestStand
process models log the raw results to a database. By default, the Test UUTs
entry point logs results after each pass through the UUT loop.

Select Configure»Database Options to launch the Database Options
dialog box, which you can use to specify the following options:

• The data link to which TestStand logs results.

• The database schema that TestStand uses. A schema contains the
SQL statements, table definitions, and TestStand expressions that
instruct TestStand on how to log results to a database. TestStand
includes at least one set of predefined schemas and at least one schema
for each supported DBMS. You can also create new schemas that log
results to tables you define.

• Various filtering options to limit the amount of data that TestStand
logs.

• Whether the process models log data after each step is executed or after
each pass through the UUT loop.

For more information about the Database Options dialog box, refer to the
TestStand Help.

You can also customize or replace any portion of the database logging
sequences. Refer to Appendix A, Process Model Architecture, for more
information about customizing the default process model.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-7 TestStand Reference Manual

Using Database Logging
Complete the following steps before using the default process model to log
results to a database:

1. Decide which DBMS you want TestStand to log the results to. By
default, TestStand supports Microsoft SQL Server, Oracle, and
Microsoft Access. If you decide to use another DBMS, refer to the
Adding Support for Other Database Management Systems section of
this chapter.

2. Make sure that you have installed the appropriate client DBMS
software that is required to communicate with the DBMS.

You must decide whether to use an ODBC driver or a specific OLE DB
provider for your DBMS. Microsoft Access and Microsoft SQL Server
only require you to install an ODBC driver or OLE DB provider. Most
Oracle ODBC drivers and OLE DB providers require that you install
Oracle Client also.

Refer to the <TestStand>\Doc\readme.txt for more information
about suggested providers, versions of ODBC drivers, and client
DBMS software.

3. Create the default database tables in a database in your DBMS.

TestStand comes with SQL script files for creating and deleting the
default database tables that the default schemas require. For example,
the Access Create Generic Recordset Result Tables.sql
file contains SQL commands to create the default tables for Access.
The Access Drop Result Tables.sql file contains SQL
commands to delete the default tables. These script files are located in
the <TestStand>\Components\NI\Models\TestStandModels\
Database directory.

TestStand installs an example Microsoft Access database, TestStand
Results.mdb, in the <TestStand>\Components\NI\Models\
TestStandModels\Database directory.

For more information about creating the default database tables using
an SQL script file, refer to the Using Data Links section of this chapter.
Refer to the Creating the Default Result Tables section of this chapter
for more information about the default table schema used by the
process model.

4. Use the Database Options dialog box to enable database logging and
to define a data link and schema for the default process model to use.

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-8 ni.com

Refer to the TestStand Help for more information about the Database
Options dialog box. Refer to the Using Data Links section of this chapter
for more information about defining data links.

Logging Property in the Sequence Context
When the database logger starts, it creates a temporary property named
Logging in the sequence context in which the database logger evaluates
expressions. The Logging property contains subproperties that provide
information about database settings, process model data structures, and the
results that the logger processes. As the Logging property processes the
result list, the logger updates subproperties of Logging to refer to the
UUT result, step result, and the step result subproperty the logger is
processing. You can reference the Logging subproperties in the
precondition and value expressions that you specify for statement and
column values.

The Logging property has the following subproperties:

• UUTResult—Contains the UUT result that the logger is processing.
If the logger is processing a step or a subproperty, this property holds
the UUT result that contains the step result or subproperty.

• StepResult—Contains the step result that the logger is processing.
If the logger is processing a subproperty, this property holds the step
result that contains the subproperty. If the logger is processing a
UUT result, this property contains the result of the sequence call in
the process model that calls the Main sequence in the client file.

• StepResultProperty—Contains the subproperty of the step result that
the logger is processing. If the logger is not processing a subproperty,
this property does not exist.

• ExecutionOrder—Contains a numeric value that the logger
increments after it processes each step result.

• StartDate—Specifies the date on which the UUT test began. This
property is an instance of the DateDetails custom data type.

• StartTime—Specifies the time at which the UUT test began. This
property is an instance of the TimeDetails custom data type.

• UUT—Specifies the serial number, test socket index, and other
information about the UUT. This property is an instance of the
UUT custom data type.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-9 TestStand Reference Manual

• DatabaseOptions—Contains the process model database settings you
configure in the Database Options dialog box. This property is an
instance of the DatabaseOptions custom data type.

• StationInfo—Specifies the station ID and the user name. This
property is an instance of the StationInfo custom data type.

The TestStand process model files define the structure of the
DatabaseOptions, DateDetails, TimeDetails, UUT, and StationInfo custom
data types.

TestStand Database Result Tables
This section describes the default table schemas that TestStand uses. This
section also outlines how to modify existing schemas or create new
schemas.

Default TestStand Table Schema
The default TestStand database schema requires the following tables in
your database:

• UUT_RESULT

• STEP_RESULT

• STEP_SEQCALL

• STEP_PASSFAIL

• STEP_CALLEXE

• STEP_MSGPOPUP

• STEP_PROPERTYLOADER

• STEP_STRINGVALUE

• MEAS_NUMERICLIMIT

• MEAS_IVI_WAVE

• MEAS_IVI_WAVEPAIR

• MEAS_IVI_SINGLEPOINT

The UUT_RESULT table contains information about each UUT that
TestStand tests. The STEP_RESULT table contains information about each
step that TestStand executes while testing each UUT. The other table names
with the STEP prefix contain information for each specific step type. The
table names with the MEAS prefix contain information about sub results
that TestStand logs for a step type.

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-10 ni.com

Each table contains a primary key column ID. The data type of the column
is Number, String, or GUID, depending on the selected schema. Each table
might contain foreign key columns. The data types of the columns must
match the primary key that the data types reference.

Refer to the TestStand Help for complete information about the default
TestStand table schemas.

Creating the Default Result Tables
The TestStand logging feature requires that you create the database tables
in a database for your DBMS. You can use TestStand’s Database Viewer
to create the default result tables that the schema requires.

Note To use the Database Viewer application, you must have previously set up the DBMS
server and any required DBMS client software.

For more information about creating the default database tables using an
SQL script file, refer to the Database Viewer—Creating Result Tables
section of this chapter. Refer to the TestStand Help and the Using Data
Links section of this chapter for more information about configuring your
system to access your DBMS.

Adding Support for Other Database Management Systems
TestStand supports Microsoft SQL Server, Oracle, and Microsoft Access.
You can add support for another DBMS in the following ways:

• Review the default schemas in the Database Options dialog box.
TestStand includes schemas for each DBMS, and each schema
conforms to the default database tables.

• Create result tables for the default table schema for each DBMS by
using the SQL script files located in the <TestStand>\
Components\NI\Models\TestStandModels\Database
directory.

If you want to add support for another DBMS, you must create a new
schema in the Database Options dialog box. Use the Duplicate button on
the Schemas tab to copy an existing schema, and then customize its
statement, column, and parameter settings to work with the new DBMS.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-11 TestStand Reference Manual

You can also follow these steps to create new script files for your new
DBMS:

1. Create new script files in the <TestStand>\Components\User\
Models\TestStandModels\Database directory.

Tip National Instruments recommends including the name of the DBMS in the filename.

2. Enter the SQL commands for creating and deleting your DBMS tables
to the new script files. Refer to any of the SQL database script files that
TestStand provides for an example.

For example, the SQL database syntax file for Oracle result tables
might contain the following commands:

CREATE TABLE UUT_RESULT

(

ID NUMBER PRIMARY KEY,

UUT_SERIAL_NUMBER CHAR (255),

USER_LOGIN_NAME CHAR (255),

START_DATE_TIME DATE,

EXECUTION_TIME NUMBER,

UUT_STATUS CHAR (255),

UUT_ERROR_CODE NUMBER,

UUT_ERROR_MESSAGE CHAR (255)

)

/

CREATE SEQUENCE SEQ_UUT_RESULT START WITH 1

/

CREATE FUNCTION UUT_RESULT_NEXT_ID RETURN NUMBER IS

X NUMBER;

BEGIN

SELECT SEQ_UUT_RESULT.NextVal INTO X FROM DUAL;

RETURN X;

END;

/

Note Notice that TestStand uses three separate commands, each separated by the " / "
character, to create the UUT_RESULT table in Oracle.

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-12 ni.com

Use a similar syntax for deleting tables. For example, the SQL script
file for Oracle might contain the following commands for deleting
result tables:

DROP TABLE STEP_RESULT

/

DROP SEQUENCE SEQ_STEP_RESULT

/

DROP FUNCTION STEP_RESULT_NEXT_ID

/

Database Viewer
TestStand includes the Database Viewer application for viewing data in a
database, editing table information, and executing SQL commands. The
Database Viewer application, DatabaseView.exe, is located in the
<TestStand>\Components\NI\Tools\DatabaseView directory.

For more information about the Database Viewer, refer to the TestStand
Help.

On-The-Fly Database Logging
When you enable the On-The-Fly Database Logging option, the process
models progressively log result data concurrent with the execution instead
of waiting until the execution or testing of the UUT is complete.
Database logging uses the ProcessModelPostResultListEntry and
SequenceFilePostResultListEntry callbacks to process the step results. The
final data logged is essentially identical to the data generated by the process
model at the end of execution.

When you use this option, you can use the Database Viewer application to
view the data in the database tables while the sequence is executing. Use
the Discard Results and Disable Results When Not Required by Model
options on the Model Options dialog box to instruct TestStand to discard
step results after logging each result.

If you use On-The-Fly Database Logging with a schema that uses either
stored procedure or command statements that do not use the INSERT
command, you cannot define constraints for foreign keys in step result
statements that references primary keys in UUT results. Defining
constraints for these types of foreign keys will generate an error, since the
on-the-fly database logger cannot execute the statement to create the record
containing the primary key before executing the statement to create the
record containing the foreign key.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-13 TestStand Reference Manual

Using Data Links
TestStand requires you to define a data link when you specify the database
where TestStand logs results, or when you use the Database step types.
TestStand uses the Data Link Properties dialog box to create or edit a data
link connection string. Use the Data Link Properties dialog box to specify
initialization properties for your OLE DB provider.

Refer to the TestStand Help for more information about the Data Link
Properties dialog box.

Using the ODBC Administrator
To access databases through the ODBC standard, you must have an ODBC
driver for each database system you use. Each ODBC driver must register
itself with the operating system when you install it. You must also define
and name data sources in the ODBC Administrator in the Windows Control
Panel. This typically requires information such as a server, database, and
additional database-specific options. You can define one or more data
sources for each ODBC driver.

♦ To access the ODBC Administrator in Windows 98, select Start»Settings»
Control Panel»ODBC Administrator.

♦ To access the OBDC Administrator in Windows 2000 or Windows XP,
select Start»Settings»Control Panel»Administrative Tools»Data
Sources (ODBC).

Note Since the database features of TestStand comply with the ODBC standard, you can
use any ODBC-compliant database drivers. TestStand does not install any ODBC database
drivers. DBMS vendors and third-party developers offer their own drivers. Refer to your
vendor documentation for information about registering your specific database drivers with
the ODBC Administrator.

For more information about the ODBC Data Source Administrator dialog
box, refer to the TestStand Help.

Example Data Link and Result Table Setup for Microsoft Access
This section outlines an example of how to link a TestStand data link to
a Microsoft Access database file (.mdb) using the Microsoft Jet OLE DB
provider to log results using the default process model.

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-14 ni.com

Database Options—Specifying a Data Link and
Schema
To configure the database logging options complete the following steps:

1. Launch the sequence editor and log in as Administrator.

2. Select Configure»Database Options to launch the Database Options
dialog box. The Logging Options tab is active.

3. Enable database logging by clicking the checkbox next to the Disable
Database Logging option.

4. Click the Data Link tab on the Database Options dialog box and select
Access from the Database Management System ring control.

5. Click Build to launch the Data Link Properties dialog box.

6. Select Microsoft Jet 4.0 OLE DB Provider on the Provider tab on
the Data Link Properties dialog box.

7. Click Next. The Connection tab is now active.

8. On the Connection tab, click Browse to launch the Select Access
Database dialog box.

9. Using the Select Access Database dialog box, locate your Microsoft
Access database file (.mdb) and click Open to select the file.

10. On the Data Link Properties dialog box, click Test Connection to
verify that you properly entered the required information.

11. Click OK to close the Data Link Properties dialog box.

Notice that the Connection String control on the Database Options dialog
box now contains a literal string expression version of the data link
connection string.

Database Viewer—Creating Result Tables
Complete the following steps to create the default result tables in your
database:

1. If you are continuing from the steps in the previous section, skip to
Step 2. Otherwise, complete the following steps:

a. Launch the sequence editor and log in as Administrator.

b. Select Configure»Database Options to launch the Database
Options dialog box. The Logging Options tab is active.

c. Click the Data Link tab on the Database Options dialog box.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-15 TestStand Reference Manual

2. Select View Data to open the data link in the Database Viewer
application.

Note Step 2 requires that the Connection String control contains a valid expression.

3. Select File»New Execute SQL Window to open an Execute SQL
window.

4. Select SQL»Load From File and select the Access Create
Generic Recordset Result Tables.sql file in the
<TestStand>\Components\NI\Models\TestStandModels\

Database directory.

Note Notice that the SQL Command control contains a set of SQL commands for creating
the default result tables.

5. Select SQL»Execute to create the default result tables. Review the
results of the SQL commands in the SQL History control to ensure that
the tables were created successfully.

6. Click the Data Link window and select Window»Refresh to view the
tables.

After you have completed these steps, any execution you launch with
the Test UUTs or Single Pass entry point automatically logs its results
to the database.

The remainder of this chapter describes how to manage and use test reports
in TestStand.

Implementation of the Test Report Capability
Most of the test report capabilities described in this chapter are not native
to the TestStand Engine or the TestStand Sequence Editor. Instead, the
default process model that comes with TestStand implements the test report
capabilities. This approach allows you to customize all aspects of test
reporting. Refer to Appendix A, Process Model Architecture, for more
information about the default process model.

Even if you do not modify or replace the test report implementation in the
process model, you can still customize the contents of test reports using the
Report Options dialog box provided in the default process model. Refer to
the TestStand Help for more information about the Report Options
dialog box.

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-16 ni.com

The default process model, which calls the Main sequence in the client
sequence file to test a UUT, relies on the automatic result collection
capabilities of the TestStand Engine to accumulate the raw data for each
UUT test report. The engine can automatically compile the result of each
step into a result list for an entire sequence, which contains the result of
each step and the result list of each subsequence call it makes. Refer to the
Result Collection section of Chapter 3, Executions, for information about
automatic result collection.

Using Test Reports
The Test UUTs and Single Pass entry points in the TestStand process
models generate UUT test reports. The Test UUTs entry point generates a
test report and writes it to disk after each pass through the UUT loop. Select
Configure»Report Options to launch the Report Options dialog box, in
which you can set options that determine the contents and format of the test
report and the names and locations of test report files.

In the TestStand Sequence Editor, the Report tab on the Execution window
displays the report for the current execution. Usually, the Report tab is
empty until execution completes. The default process model can generate
reports in either XML, HTML, or ASCII-text formats.

You can also use an external application to view reports in these or other
formats by selecting View»Launch Report Viewer when an Execution
window is active. Select Configure»External Viewers to specify the
external application that TestStand launches to display a particular report
format.

Refer to the TestStand Help for more information about the Report Options
and Configure External Viewers dialog boxes.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-17 TestStand Reference Manual

Figure 6-2 shows a test report in XML or HTML text format as it appears
on the Report tab in an Execution window.

Figure 6-2. XML or HTML Test Report on the Report Tab

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-18 ni.com

Figure 6-3 shows a test report in ASCII-text format as it appears on the
Report tab in an Execution window.

Figure 6-3. ASCII-Text Test Report on the Report Tab

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-19 TestStand Reference Manual

Failure Chain in Reports
For UUTs that fail, XML, HTML, and ASCII-text reports include a failure
chain section in the report header. The first item in the failure chain table
shows the step whose failure causes the UUT to fail. The remaining items
show the Sequence Call steps through which the execution reaches the
failing step. In XML and HTML reports, each step name in the failure chain
is a hyperlink to the section of the report that displays the result for the step.
Figures 6-2 and 6-3 show a failure chain in which the failure of the
RAM Test step in MainSequence causes the UUT to fail.

Batch Reports
When you use the Batch process model, the model generates a Batch report
in addition to a report for each UUT. The batch report summarizes the
results for all the UUTs in the batch. When the report format is XML
or HTML, the batch report provides hyperlinks to each UUT report.
Figure 6-4 shows an example batch report.

Figure 6-4. Example Batch Report

Chapter 6 Database Logging and Report Generation

TestStand Reference Manual 6-20 ni.com

Property Flags that Affect Reports
TestStand includes three flags that you can set to identify the result
properties that should be automatically displayed in the report:

• PropFlags_IncludeInReport

• PropFlags_IsLimit

• PropFlags_IsMeasurementValue

The IncludeInReport flag specifies that a subset of the result properties
should automatically appear in the report. For properties that hold output
values or limit values, use the IsLimit and IsMeasurementValue flags to
selectively exclude limits or output values according to the option you
select in the Report Options dialog box. If an array or container property
sets a reporting flag, the report generator also considers the flag to be set
for all array elements or subproperties within the containing object.

Tip When you use the IncludeInReport, IsLimit, and IsMeasurementValue flags on result
properties for your custom step types, the report generator will format those properties into
the report. If you require specific formatting for your report, use these flags to achieve the
report output you want without altering the report generator settings.

On-The-Fly Report Generation
When you enable the On-The-Fly Reporting option, which is located on the
Contents tab on the Report Options dialog box, the process models will
progressively generate the test report concurrent with the execution instead
of waiting until the execution or the testing of UUTs is complete. The final
test report generated by the On-The-Fly Report Generator is identical to
that generated by the process models at the end of execution.

When you use on-the-fly reporting, you can select the Report tab in the
Execution window to view the test report during the execution. If the
Report tab is the active view of the Execution window while a sequence is
executing, the test report will periodically update as step results are
processed.

In addition to generating the test report concurrently with execution, the
On-The-Fly Report Generator periodically persists the current test report to
a temporary file. The persistence interval is specified in the process model
sequences. The temporary file is deleted and the final test report is saved to
file at the end of a UUT loop execution. For more information about
process model sequences, refer to Appendix A, Process Model
Architecture.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-21 TestStand Reference Manual

If the Conserve Memory and Only Display Latest Results report option is
enabled, the On-The-Fly Report Generator periodically purges internal
data-structures. As a result, the test report that is displayed in the Report
view of the Execution window will only show the results for those steps that
have not yet been purged. The persisted temporary and final test report files,
however, will contain all of the step results. For these files, the step results
for Sequence Call and Loop Result steps will appear after their
corresponding Sequence Call and Loop Index step results, respectively.

Use the Discard Results or Disable Results When Not Required By Model
options on the Model Options dialog box to instruct TestStand to conserve
memory by discarding results after reporting each result.

XML Report Schema
XML Test Reports are described according to the XML W3C Schema.
The XML Schema Definition (XSD) file is stored in the following location:
<TestStand>\Components\NI\Models\TestStandModels\

Report.xsd.

© National Instruments Corporation 7-1 TestStand Reference Manual

7
User Management

The TestStand Engine features a user manager, which is a list of users, their
user names and passwords, and their privileges. TestStand limits the
functionality of the sequence editor and operator interfaces depending on
the privilege settings that have been defined in the user manager for the
current user.

When you launch the TestStand Sequence Editor or any of the TestStand
Operator Interfaces, they display the Login dialog box by calling the
LoginLogout Front-End callback sequence. The LoginLogout sequence
calls the DisplayLoginDialog method of the Engine class, which launches
the actual Login dialog box.

The User Manager tab on the Station Options dialog box specifies whether
TestStand enforces user privileges and specifies the location of the user
manager configuration file. Refer to the TestStand Help for more
information about the User Manager tab on the Station Options dialog box.

Note The TestStand User Manager is designed to help you implement policies and
procedures concerning the use of your test station. It is not a security system and it does
not inhibit or control the operating system or third-party applications. You must use the
system-level security features that are available with your operating system to secure your
test station computer against unauthorized use.

For information about the User Manager window, adding users, and setting
user privileges, refer to the TestStand Help.

Verifying User Privileges
This section discusses how to verify privileges by user.

Accessing Privilege Settings for the Current User
To verify in an expression that the current user has a specific privilege, call
the CurrentUserHasPrivilege expression function. To verify the
privilege in a code module, call the CurrentUserHasPrivilege method
of the Engine class in the TestStand API.

Chapter 7 User Management

TestStand Reference Manual 7-2 ni.com

When you call the CurrentUserHasPrivilege expression function or
method, you must specify the property name of the privilege as a string
argument. The current user has a privilege if the property is True or if the
GrantAll property in any enclosing privilege group is True. For example,
a user has the privilege to terminate an execution if the
User.Privileges.Configure.Terminate property is True, if the
User.Privileges.Configure.GrantAll property is True, or if the
User.Privileges.GrantAll property is True. The CurrentUserHasPrivilege
expression function returns True if the current user has the privilege or you
have disabled privilege checking.

You can pass any subset of the property name tree structure to the
CurrentUserHasPrivilege expression function. For example, you can use
either of the following two expressions to determine whether the current
user has the privilege to terminate an execution:

• CurrentUserHasPrivilege("Terminate")

• CurrentUserHasPrivilege("Configure.Terminate")

You can pass "*" as the string argument to the CurrentUserHasPrivilege
expression function to determine whether a user is currently logged in.
Refer to Chapter 1, TestStand Architecture, for more information about
using expressions.

The CurrentUserHasPrivilege method behaves identically to the expression
function, except that it takes additional parameters. For more information
about Engine.CurrentUserHasPrivilege, refer to the TestStand Help.

Accessing Privilege Settings for Any User
The TestStand API includes methods that give you access to the privileges
of any user. Use Engine.GetUser to return a User object. You can then
use User.HasPrivilege to inspect the value of a specific privilege. This
method behaves identically to the CurrentUserHasPrivilege expression
function. Refer to the TestStand Help for more information about the
User.HasPrivilege method.

© National Instruments Corporation 8-1 TestStand Reference Manual

8
Customizing and Configuring
TestStand

This chapter describes how to configure and customize a TestStand station.

Customizing TestStand
This section describes the various TestStand components that you can
customize to meet your specific needs.

Operator Interfaces
The TestStand Operator Interfaces are application programs that you use to
execute and debug test sequences on a test station. The operator interfaces
are available in several different programming languages and include full
source code, allowing you to modify them to meet your specific needs.

Refer to Chapter 9, Creating Custom Operator Interfaces, for more
information about how to create and modify TestStand Operator Interfaces.

Process Models
The TestStand process models define the set of operations that occur for all
test sequences, such as identifying the UUT, notifying the operator of
pass/fail status, generating a test report, and logging results. TestStand
includes three fully customizable process models to meet your specific
testing needs: Sequential, Parallel, and Batch.

Refer to Chapter 10, Customizing Process Models and Callbacks, to learn
how to modify the TestStand process models.

Chapter 8 Customizing and Configuring TestStand

TestStand Reference Manual 8-2 ni.com

Callbacks
TestStand calls callback sequences at specific points during sequence
execution and test station operation. You can modify these callbacks to
customize the operation of your test station.

Refer to Chapter 10, Customizing Process Models and Callbacks, to learn
how to modify TestStand callback sequences.

Data Types
Data types define station global variables, sequence file global variables,
sequence local variables, and properties of steps and step types. You can
create and modify your own data types in TestStand, as well as modify the
standard TestStand data types.

Refer to Chapter 11, Type Concepts, and Chapter 12, Standard and Custom
Data Types, to learn how to create and modify TestStand data types.

Step Types
Steps that you add to TestStand sequences are instances of step types.
A step type defines the behavior and properties of a step. You can create
and modify your own step types in TestStand, as well as modify the
standard TestStand step types.

Refer to Chapter 11, Type Concepts, and Chapter 13, Creating Custom Step
Types, to learn how to create and modify TestStand step types.

Tools Menu
The TestStand Sequence Editor and Operator Interfaces each include a
Tools menu that contains common tools for use with TestStand. These tools
include a documentation generator, converters for LabVIEW and
LabWindows/CVI Test Executive sequences, a Database Viewer
application, and the TestStand Deployment Utility. You can modify the
Tools menu to contain the exact tools you need. You can also add new
items to the Tools menu.

Refer to the TestStand Help for more information about how to add your
own commands to the Tools menu using the Customize Tools Menu
dialog box.

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-3 TestStand Reference Manual

TestStand Directory Structure
The TestStand installation program installs the TestStand Engine, the
TestStand Sequence Editor, the module adapters, and additional
components on your system. Table 8-1 shows the names and contents of
each subdirectory of the TestStand installation.

Table 8-1. TestStand Subdirectories

Directory Name Contents

AdapterSupport Support files for the LabVIEW, LabWindows/CVI, and HTBasic
Adapters.

API TestStand ActiveX automation server libraries and utility libraries
for several programming languages.

Bin TestStand Sequence Editor executable, TestStand Engine DLLs,
and support files.

Cfg Configuration files for TestStand Engine and TestStand Sequence
Editor options.

CodeTemplates Source code templates for step types.

Components Components that are installed with TestStand and components that
you develop. This includes callback files, converters, icons, language
files, process model files, step types, source files, and utility files.

Doc Documentation files.

Examples Example sequences and tests.

OperatorInterfaces LabVIEW, LabWindows/CVI, Microsoft Visual Basic, C#,
and C++ (MFC) Operator Interfaces with source code.

Redist Redistributable engine component for use with the TestStand
Deployment Utility.

Setup Support files for the TestStand installer.

Chapter 8 Customizing and Configuring TestStand

TestStand Reference Manual 8-4 ni.com

NI and User Subdirectories
Three of the TestStand directories contain source files that you can modify
or replace: OperatorInterfaces, CodeTemplates, and Components.
These directories contain NI and User subdirectories.

By default, TestStand installs its files into the NI subdirectory. Use the
User subdirectory to store your modified files to ensure that installations
of newer versions of TestStand do not overwrite your customizations. The
User subdirectory also acts as the staging area for the components that you
include in your own run-time deployment of TestStand.

The Components Directory
TestStand installs the sequences, executables, project files, and source
files for TestStand components in the <TestStand>\Components\NI
directory. Most of the subdirectories in the <TestStand>\
Components\NI directory have the name of a type of TestStand
component. For example, the <TestStand>\Components\NI\
StepTypes subdirectory contains support files for the TestStand
built-in step types.

If you want to create a new component or customize a TestStand
component, copy the component files from the NI subdirectory to the User
subdirectory before customizing. This ensures that installations of newer
versions of TestStand do not overwrite your customizations. If you copy the
component files as the basis for creating a new component, be sure to
rename the files so that your customizations do not conflict with the default
TestStand components.

The TestStand Engine searches for sequences and code modules using
the TestStand search directory path. The default search precedence
places the <TestStand>\Components\User directory tree before the
<TestStand>\Components\NI directory tree. This ensures that
TestStand loads the sequences and code modules that you customize
instead of loading the default TestStand versions of the files. To modify the
precedence of the TestStand search directory paths, select Configure»
Search Directories from the sequence editor menu bar.

When you deploy a run-time version of the TestStand Engine, you can
bundle your components in the User directory with the TestStand run-time
deployment. Refer to Chapter 14, Deploying TestStand Systems, for more
information about how to deploy the TestStand Engine and your custom
components.

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-5 TestStand Reference Manual

Table 8-2 lists each subdirectory found in the NI and User directory trees
of the <TestStand>\Components directory.

Table 8-2. TestStand Component Subdirectories

Directory Name Contents

Callbacks The Callbacks directory contains the sequence files in which
TestStand stores Station Engine callbacks and Front-End callbacks.
TestStand installs the Station Engine and Front-End callback files into
the <TestStand>\Components\NI\Callbacks directory tree. Refer
to Chapter 10, Customizing Process Models and Callbacks, for more
information about customizing the Station Engine and Front-End
callbacks.

Icons The Icons directory contains icon files for module adapters and step
types. TestStand installs the icon files for module adapters and built-in
step types into the <TestStand>\Components\NI\Icons directory.
Refer to Chapter 13, Creating Custom Step Types, for more information
about creating your own icons for your custom step types.

Language The Language directory contains string resource files. It has one
subdirectory per language. Refer to the Creating String Resource Files
section of this chapter for more information about creating string
resource files in the Language directory tree.

Models The Models directory contains the default process model sequence files
and supporting code modules. Refer to Chapter 10, Customizing
Process Models and Callbacks, for more information about customizing
the process model.

RuntimeServers The RuntimeServers directory contains a LabVIEW 6.1 run-time
application for executing LabVIEW 6.1-based code modules without
the LabVIEW development system. Refer to Chapter 5, Configuring the
LabVIEW Adapter, of Using LabVIEW with TestStand for more
information about using LabVIEW run-time servers.

StepTypes The StepTypes directory contains support files for step types.
TestStand installs the support files for the built-in step types into the
<TestStand>\Components\NI\StepTypes directory tree. Refer to
Chapter 13, Creating Custom Step Types, for more information about
customizing your own step types.

Tools The Tools directory contains sequences and supporting files for the
Tools menu commands. Refer to the Tools Menu section of this chapter
for more information about customizing the Tools menu.

Chapter 8 Customizing and Configuring TestStand

TestStand Reference Manual 8-6 ni.com

Creating String Resource Files
TestStand uses the GetResourceString Engine method to obtain the string
messages that it displays in windows and dialog boxes in the sequence
editor and operator interfaces. GetResourceString works with string
resource files that are stored in the .ini format. GetResourceString takes
a string category and a tag name as arguments and then searches for the
string resource in all string resource files that are in a predefined set of
directories.

The directory search follows this order:

1. <TestStand>\Components\User\Language\<current

language>

2. <TestStand>\Components\User\Language

3. <TestStand>\Components\NI\Language\<current

language>

4. <TestStand>\Components\NI\Language\English

5. <TestStand>\Components\NI\Language

To change the current language setting, select Configure»Station Options.

TestStand installs the default resource string files in the <TestStand>\
Components\NI\Language directory. If you want to customize a
resource string file for a different language, you must copy an existing
language file from the NI directory, place it in the User directory in a
Language subdirectory, and modify it. If you want to create a resource
string file that applies to all languages, place the resource file in the base
<TestStand>\Components\User\Language directory.

If you want to create your own resource string file for your custom
components, ensure that the category names inside the resource file are
unique so that they do not conflict with any names that TestStand uses.

Note The TestStand Engine loads resource files when you start TestStand. If you make
changes to the resource files, you must restart TestStand for the changes to take effect.

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-7 TestStand Reference Manual

Resource String File Format
Each string resource file must have the .ini file extension. String resource
files use the following format:

[category1]

tag1 = "string value 1"

tag2 = "string value 2"

[category2]

tag1 = "string value 1"

tag2 = "string value 2"

Note When you create new entries in a string resource file, begin your category name with
a unique ID such as a company prefix. Using a unique ID will prevent name collision. For
example, NI_SUBSTEPS uses NI as a unique ID.

When you specify custom resource strings, you create the category and
tag names. The number of categories and tags is unlimited. A string can be
of unlimited size. However, if a string has more than 512 characters, you
must break it into multiple lines. Each line has a tag suffix of lineNNNN,
where NNNN is the line number with zero padding. The following is an
example of a multiple-line string:

[category1]

tag1 line0001 = "This is the first line of a very long"

tag1 line0002 = "paragraph. This is the second line"

You can use escape codes to insert unprintable characters. Table 8-3 lists
the available escape codes.

Table 8-3. Resource String File Escape Codes

Escape Code Description

\n Embedded linefeed character.

\r Carriage return character.

\t Tab character.

\xnn Hexadecimal value. For example, \x1B represents
the ASCII ESC character, which has a decimal
value of 27.

\\ Backslash character.

\" DoubleQuote character.

Chapter 8 Customizing and Configuring TestStand

TestStand Reference Manual 8-8 ni.com

The following string shows how to use \n, the embedded linefeed
character:

tag1 = "This is line one.\nThis is line two"

Configuring TestStand
This section outlines the configuration options in TestStand.

Sequence Editor and Operator Interface Startup Options
You can append certain options to the sequence editor and operator
interface command line, separating various parameters by spaces.
The sequence editor and all operator interface applications support
command-line options for opening and running sequences. Table 8-4
shows the valid startup options.

Table 8-4. Sequence Editor or Operator Interface Startup Options

Option Purpose

sequencefile
{sequencefile2}...

Instructs the application to automatically load the sequence files at
startup.

For example:
SeqEdit.exe "c:\MySeqs\seq1.seq" "c:\MySeqs\seq2.seq"

/run sequence
sequencefile

Instructs the application to automatically load and run the sequence in
the sequence file at startup.

For example:
SeqEdit.exe /run MainSequence "c:\MySeqs\test.seq"

/runEntryPoint
entrypointname

sequence file

Instructs the application to automatically load and execute the sequence
file at startup using the specified Execution entry point.

For example:
SeqEdit.exe /runEntryPoint "Test UUTs"

"c:\MySeqs\test.seq"

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-9 TestStand Reference Manual

Note Both "/" and "-" are valid command prefixes.

Note Quotes are required for arguments that contain spaces, such as "Test UUTs" and
"C:\My Documents\MySeq.seq".

/quit Instructs the application to exit after the specified automatically-run
executions complete.

For example:
SeqEdit.exe /run MainSequence "c:\MySeqs\test\seq"

/quit

Notice that the /quit command is ignored if the execution fails to
launch.

/useExisting Instructs the application to not open a new instance of the sequence
editor if one is already running.

For example:
SeqEdit.exe /useExisting

Notice that this option is only available for use with the sequence editor.
Additionally, the sequence editor will ignore this option if the /quit
option is specified.

/setCurrentDir Instructs the application to set the current directory to the first directory
in the file dialog directory history list. The current directory is the
directory that the File dialog box initially displays when you open or
save a file. This option allows you to set the directory displayed by the
File dialog box to the directory that was displayed in the File dialog box
the last time that you ran the sequence editor. The sequence editor sets
the current directory after processing the other command line options.

For example:
SeqEdit.exe /setCurrentDir

/? Instructs the application to launch a help dialog box that contains a list
of valid command-line arguments, and then to close immediately.

For example:
SeqEdit.exe /?

Notice that all other options are ignored if the "/?" option is specified.

Table 8-4. Sequence Editor or Operator Interface Startup Options (Continued)

Option Purpose

Chapter 8 Customizing and Configuring TestStand

TestStand Reference Manual 8-10 ni.com

Note If there is an error in the command-line argument, the Application Manager control
generates a ReportError() event, which allows you to resolve the invalid command lines.

Configure Menu
The Configure menu in the sequence editor and operator interfaces contains
commands that control the operation of the TestStand station. The
following section provides a brief overview of the items in the Configure
menu. Refer to the TestStand Help for more information about the dialog
boxes that each menu item launches.

• Sequence Editor Options—Launches the Sequence Editor Options
dialog box, in which you can set preferences for the sequence editor.

• Station Options—Launches the Station Options dialog box, in which
you can set preferences for your TestStand station. These settings
affect all sequence editor and operator interface sessions that you run
on your computer.

• Search Directories—Launches the Search Directories dialog box, in
which you can customize the search paths for finding files. The Search
Directories dialog box also displays a list of paths. The paths that
appear first in the list take precedence over the paths that appear later.
When you first run TestStand, the list contains a default set of directory
paths.

• External Viewers—Launches the Configure External Viewers dialog
box, in which you can specify the external viewer to use for each report
format.

• Adapters—Launches the Adapter Configuration dialog box, in which
you can configure a specific module adapter, specify the active module
adapter, or configure whether the adapter is hidden in the Adapter ring
control in the sequence editor.

• Report Options—Launches the Report Options dialog box, in which
you can customize the generation of report files.

• Database Options—Launches the Database Options dialog box, in
which you can customize the logging of test result data.

• Model Options—Launches the Model Options dialog box, in which
you can specify process model specific options such as the number of
test sockets in the system.

© National Instruments Corporation 9-1 TestStand Reference Manual

9
Creating Custom Operator
Interfaces

This chapter outlines how to create or customize an operator interface
application. It also describes the various example operator interface
applications that TestStand provides.

Refer to the following documents and examples in preparation for creating
a custom operator interface application:

• The Writing an Application with the TestStand UI Controls section of
this chapter.

• The following sections of the TestStand Help:

– TestStand ActiveX API Overview—Contains an overview of the
TestStand ActiveX Server functionality and discusses how to call
the API from different programming languages.

– Core UI Classes, Properties, Methods, and Events—Lists the core
classes in the TestStand UI Controls.

– Core API Classes, Properties, and Methods—Lists the core
classes in the TestStand API.

• The TestStand User Interface Controls Reference Poster, which is
included in your TestStand package.

• The information in Chapter 6, Creating Custom User Interfaces in
LabVIEW, of the Using LabVIEW with TestStand manual and in
Chapter 6, Creating Custom User Interfaces in LabWindows/CVI,
of the Using LabWindows/CVI with TestStand manual.

If you are using an environment other than LabVIEW or
LabWindows/CVI, you can still refer to one of these sources for
general instructions on how to construct an operator interface
application.

• The example projects and source code located in the
<TestStand>\OperatorInterfaces\NI directory. Start with
these examples and customize them to meet your requirements.

Note The TestStand UI Controls are not supported in Windows 98.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-2 ni.com

Example Operator Interfaces
TestStand installs the executable, project, and source files for each example
operator interface in the <TestStand>\OperatorInterfaces\NI
directory. This directory contains the Full-Featured and Simple
subdirectories. The Full-Featured subdirectory contains operator
interfaces that allow you to load, view, execute, and debug sequence files.
The Simple subdirectory contains similar operator interfaces that are more
limited than those in the Full-Featured subdirectory in that they have no
menus and fewer commands and options. Also, the simple examples do not
display steps for sequences you load, but they do display the steps for
executions you run.

Both subdirectories contain examples with source code for LabVIEW,
LabWindows/CVI, C#, Microsoft Visual Basic .NET, and C++ (MFC).

To customize one of these operator interfaces, copy the operator interface
project and source files from the NI subdirectory to the <TestStand>\
OperatorInterfaces\User subdirectory before customizing them to
ensure that a newer installation of TestStand does not overwrite your
customizations.

Tip National Instruments recommends that you track the changes you make to the
operator interface source so that you can integrate your changes with any enhancements
from future versions of the TestStand Operator Interfaces.

TestStand User Interface Controls
With the exception of the examples located in the <TestStand>\
OperatorInterfaces\NI\TestStand 2.0.1 Operator

Interfaces (Old) directory, all operator interface examples use the
TestStand User Interface (UI) Controls. The TestStand UI Controls are a
set of ActiveX controls that implement the common functionality that
applications need in order to display, execute, and debug test sequences.
These ActiveX controls greatly reduce the amount of source code an
operator interface application requires.

National Instruments recommends that you use these controls to develop
your operator interface applications. However, you can also create an
application by directly calling the TestStand API. The examples in
<TestStand>\OperatorInterfaces\NI\TestStand 2.0.1

Operator Interfaces (Old) use this approach. While these examples
contain a large amount of complex source code, they provide less

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-3 TestStand Reference Manual

functionality than the simpler examples that use the ActiveX controls.
Therefore, National Instruments does not recommend these older examples
as a basis for new development.

For more information about writing an application by directly calling the
TestStand Engine API, refer to the Writing an Application with the
TestStand Engine API section of the TestStand Help.

Deploying an Operator Interface
Refer to Chapter 14, Deploying TestStand Systems, for more information
about deploying a TestStand Operator Interface application.

Writing an Application with the TestStand UI Controls
TestStand provides a number of controls that work together to simplify
programming an operator interface. These controls fall into two
categories—manager controls and visible controls.

Manager Controls
Manager controls call the TestStand API to perform tasks such as loading
files, launching executions, and retrieving sequence information. Manager
controls also notify you when application events occur, such as when a user
logs in, an execution reaches a breakpoint, or a user changes the file or
sequence that they are viewing. These controls are visible at design time
but invisible at run time.

Connect the manager controls to visible TestStand UI Controls to
automatically display information or allow the user to select items to view.
The following sections describe the specific functionality of the three types
of manager controls—Application Manager, SequenceFileView Manager,
and ExecutionView Manager.

Application Manager
The Application Manager control performs the following basic operations,
which are necessary in order to use the TestStand Engine in an application:

• Processes command-line arguments.

• Maintains an application configuration file.

• Initializes and shuts down the TestStand Engine.

• Logs users in and out.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-4 ni.com

• Loads and unloads files.

• Launches executions.

• Tracks existing sequence files and executions.

Your application must have a single Application Manager control that
exists for the duration of the application.

SequenceFileView Manager
A SequenceFileView Manager control performs the following tasks to
manage how other visible TestStand UI Controls view and interact with
a selected sequence file:

• Designates a sequence file as the selected sequence file.

• Tracks which sequence, step group, and steps are selected in the
selected file.

• Displays aspects of the selected file in the visible TestStand UI controls
to which it connects.

• Enables visible TestStand UI Controls to which it connects to change
the selected file, sequence, step group, and steps.

• Provides methods for executing the selected sequence file.

Your application needs one SequenceFileView Manager control for each
location, such as a window, form, or panel, in which you either display a
sequence file or let the user select a current sequence file.

ExecutionView Manager
An ExecutionView Manager control performs the following tasks to
manage how other visible TestStand UI Controls view and interact with
a selected TestStand execution:

• Designates an execution as the selected execution.

• Tracks which thread, stack frame, sequence, step group, and steps are
selected in the selected execution.

• Displays aspects of the selected execution in the visible TestStand UI
controls to which it connects.

• Enables visible TestStand UI controls to which it connects to change
the selected thread, stack frame, sequence, step group, and steps.

• Sends events to notify your application of the progress and state of the
selected execution.

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-5 TestStand Reference Manual

• Provides debugging commands.

• Updates the ReportView control to show the current report for the
selected execution.

Your application needs one ExecutionView Manager control for each
location, such as a window, form, or panel, in which you either display
an execution or let the user select a current execution.

Visible TestStand UI Controls
Visible TestStand UI Controls are visible at both design time and run time.
These controls are similar to common Windows UI controls, but they
connect to manager controls to automatically display information or to
enable the user to select items to view. Table 9-1 describes the visible
TestStand UI Controls.

Table 9-1. Visible TestStand UI Controls

Control Name Description

Button Connect a manager control to a Button control to specify that the
button performs a common operator interface command such as
"Open Sequence File". The Button control automatically enables
or disables according to the application state. The Button control
displays a localized caption.

Label Connect a manager control to a Label control to automatically
display text information about the application state in the label,
such as the name of the current user or the status of the
current UUT.

StatusBar Connect a manager control to panes of a StatusBar control to
display textual, image, or progress information about the
application state. You can also programmatically control
individual StatusBar panes to display custom information.

SequenceView Connect a SequenceFileView Manager control or an
ExecutionView Manager control to a SequenceView control to
display the steps of a sequence from a selected file or execution.
The SequenceView control displays the steps in a list with
columns whose contents you specify when you configure the
control.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-6 ni.com

ComboBox Connect a SequenceFileView Manager control or an
ExecutionView Manager control to a ComboBox control to view
or select a list of files, sequences, step groups, executions,
threads, or stack frames.

ListBox Connect a SequenceFileView Manager control or an
ExecutionView Manager control to a ListBox control to view or
select from a list of files, sequences, step groups, executions,
threads, or stack frames.

ListBar A ListBar control displays multiple pages where each page
contains a list of items. You can view and select items from the
selected page. Connect a SequenceFileView Manager control or
an ExecutionView Manager control to a ListBar page to view and
select from a list of files, sequences, step groups, executions,
threads, or stack frames.

ReportView Connect an ExecutionView Manager control to a ReportView
control to display the report for the selected execution.

ExpressionEdit An ExpressionEdit control enables the user to edit a TestStand
expression with the convenience of syntax coloring, popup help,
and statement completion.

While you do not typically need to edit expressions in an operator
interface application, you can connect a manager control to a
read-only ExpressionEdit control to automatically display text
information about the application state, such as the pathname of
the selected sequence file or the name of the current user.

You can also use ExpressionEdit controls on dialog boxes for step
types and tools in which you prompt the user to enter a TestStand
expression.

Table 9-1. Visible TestStand UI Controls (Continued)

Control Name Description

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-7 TestStand Reference Manual

Connecting Manager Controls to Visible Controls
Connect a manager control to a visible control to automatically display
sequences or reports, present a list of items to the user, invoke an
application command, or display information about the current state of the
application. When you connect controls, your application does not need the
majority of the source code you would usually write to update the user
interface and respond to user input.

The specific connections you can make depend on the type of manager
control and visible control that you are connecting. The following kinds of
connections are available: view connections, list connections, command
connections, and information source connections.

Refer to the TestStand User Interface Controls Reference Poster for an
illustration of control connections in a sample operator interface.

View Connections
You can connect manager controls to the SequenceView and ReportView
controls to display the current sequence or report, respectively.

Connect a SequenceFileView Manager control to a SequenceView control
to display the steps in the selected step group of the selected sequence in
the selected file. Connect an ExecutionView Manager control to a
SequenceView control to display the steps in the currently executing
sequence of the selected execution.

Connect an ExecutionView Manager control to a ReportView control to
display the report for the selected execution.

Call the following methods to connect to view controls:

• SequenceFileViewMgr.ConnectSequenceView

• ExecutionViewMgr.ConnectExecutionView

• ExecutionViewMgr.ConnectReportView

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-8 ni.com

List Connections
You can connect a TestStand ComboBox or ListBox control or a ListBar
page to a list provided by a manager control. Table 9-2 specifies the
available list connections.

A manager control designates one item in each list as the selected item.
A visible control that you connect to a list displays the list and indicates the
selected item. The visible control also allows you to change the selected
item, unless the application state or control configuration prohibits
changing the selection. When you change the selected item, other controls
that display the list or the selected list item update to display the new
selection. For example, you can connect a SequenceFileView Manager
control to a SequenceView control and connect its sequence file list to a
combo box. When you change the selected file in the combo box, the
SequenceView control updates to show the steps in the newly selected
sequence file.

Call the following methods to connect a list to a ComboBox or ListBox
control or a ListBar page:

• SequenceFileViewMgr.ConnectSequenceFileList

• SequenceFileViewMgr.ConnectSequenceList

• SequenceFileViewMgr.ConnectStepGroupList

• ExecutionViewMgr.ConnectExecutionList

• ExecutionViewMgr.ConnectCallStack

• ExecutionViewMgr.ConnectThreadList

Table 9-2. Available List Connections

List Manager Control

Sequence Files SequenceFileView Manager

Sequences SequenceFileView Manager

Step Groups SequenceFileView Manager

Executions ExecutionView Manager

Threads ExecutionView Manager

Stack Frames ExecutionView Manager

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-9 TestStand Reference Manual

Command Connections
TestStand applications typically provide commands to the user through
menus, buttons, or other controls. Many commands are common to
most applications, such as OpenSequenceFile, ExecuteEntryPoint,
RunSelectedSteps, Break, Resume, Terminate, and Exit. The TestStand UI
Controls Library provides a set of common commands you can add to your
application. You can connect these commands to TestStand buttons or
application menu items. When you connect a command to a button or menu
item, the button or menu item automatically executes the command. You
do not need an event handler to implement the command.

The commands also determine the menu item or button text to display
according to the current language and automatically dim or enable buttons
or menu items according to the state of the application. Because the
TestStand UI Controls Library implements many common application
commands, connecting commands to buttons and menu items significantly
reduces the amount of source code your application requires.

Tip The CommandKinds enumeration defines the set of available commands. Refer to the
TestStand Help for more information about this enumeration before adding commands to
your application so that you do not unnecessarily re-implement an existing command.

Some commands apply to the selected item in the manager control to which
you connect. For example, the Break command suspends the current
execution that an ExecutionView Manager control selects. Other
commands, such as Exit, function the same regardless of the manager
control you use to connect them.

Refer to the TestStand Help for information about each CommandKinds
enumeration constant and the manager controls with which the command
functions.

Call the following methods to connect a command to a Button control:

• ApplicationMgr.ConnectCommand

• SequenceFileViewMgr.ConnectCommand

• ExecutionViewMgr.ConnectCommand

Refer to the Menus and Menu Items section of this chapter for information
about how to connect commands to menu items.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-10 ni.com

To invoke a command without connecting it to a control, obtain a
Command object from one of the following methods:

• ApplicationMgr.GetCommand

• SequenceFileViewMgr.GetCommand

• ExecutionViewMgr.GetCommand

• ApplicationMgr.NewCommands

After you obtain a Command object, call the Command.Execute method
to invoke the command.

Information Source Connections
Manager controls can connect information sources to Label and
ExpressionEdit controls and StatusBar panes to display information about
the state of the application. The types of information connections you can
establish are caption connections, image connections, and numeric value
connections.

Caption Connections
Caption connections display text that describes the status of the application.
For example, you can use the Application Manager control to connect a
caption to a Label control so that the Label control automatically displays
the name of the currently logged in user.

The CaptionSources enumeration defines the set of captions to which you
can connect. Some captions apply to the selected item in the manager
control with which you connect them. For example, the UUTSerialNumber
caption displays the serial number of the current UUT for the execution that
an ExecutionView Manager control selects. Other captions, such as
UserName, function the same regardless of which manager control you use
to connect them.

Refer to the TestStand Help for information about each CaptionSources
enumeration constant and the manager controls with which the caption
source functions.

Call the following methods to connect a caption to a Label control,
ExpressionEdit control, or StatusBar pane:

• ApplicationMgr.ConnectCaption

• SequenceFileViewMgr.ConnectCaption

• ExecutionViewMgr.ConnectCaption

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-11 TestStand Reference Manual

Call the following methods to obtain the text of a caption without
connecting it to a control:

• ApplicationMgr.GetCaptionText

• SequenceFileViewMgr.GetCaptionText

• ExecutionViewMgr.GetCaptionText

Image Connections
Image connections display icons that illustrate the status of the application.
For example, you can use the ExecutionView Manager control to connect
an image to a StatusBar pane so that the pane automatically displays an
image that indicates the execution state of the selected execution.

The ImageSources enumeration defines the set of images to which you can
connect. Images may depend on the selected item in the manager control
with which you connect them. For example, the CurrentStepGroup
enumeration constant displays an image for the currently selected step
group when you connect it to a SequenceFileView Manager control, or it
displays an image for the currently executing step group when you connect
it to an ExecutionView Manager control.

Refer to the TestStand Help for information about each ImageSources
enumeration constant and the manager controls with which the image
source functions.

Call the following methods to connect an image to a StatusBar pane:

• ApplicationMgr.ConnectImage

• SequenceFileViewMgr.ConnectImage

• ExecutionViewMgr.ConnectImage

To obtain an image without connecting it to a control, call the following
methods:

• ApplicationMgr.GetImageName

• SequenceFileViewMgr.GetImageName

• ExecutionViewMgr.GetImageName

Note To obtain an image from an image name, you must use properties from the
TestStand API such as Engine.SmallImageList, Engine.LargeImageList, and
Engine.Images.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-12 ni.com

Numeric Value Connections
A numeric value connection graphically displays a numeric value that
illustrates the status of the application. For example, you can use the
ExecutionView Manager control to connect a numeric value to a StatusBar
pane so that the StatusBar pane automatically displays a progress bar that
indicates the percentage of progress made in the current execution.

The NumericSources enumeration defines the set of values to which you
can connect. Refer to the TestStand Help for information about each
NumericSources enumeration constant and the manager controls with
which the command functions.

To connect a numeric source to a StatusBar pane, call
ExecutionViewMgr.ConnectNumeric. To obtain a numeric value
without connecting it to a control, call
ExecutionViewMgr.GetNumeric.

Specifying and Changing Control Connections
An application typically establishes control connections after loading
the window that contains the controls to be connected. However, the
application can establish or change control connections at any time.

Connections from manager controls to visible controls are many-to-one.
Therefore, you can make the same connection from a manager control to
multiple visible controls. For example, if you connect two combo boxes to
the sequence list of a SequenceFileView Manager control, both combo
boxes display the selected sequence in the current file. If you change the
selection in one combo box, the other combo box updates to show the new
selection. However, a visible control or a connectable element of a visible
control, such as a ListBar page or a StatusBar pane, can have only one
connection of a particular type. When you connect a manager control to
a visible control that is already connected, the new connection replaces the
existing connection to the visible control.

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-13 TestStand Reference Manual

Using TestStand UI Controls in Different Environments
The following sections describe how to use the TestStand UI Controls in
different environments.

LabVIEW
To use the TestStand UI Controls in LabVIEW, use the VIs and
UI Controls in the TestStand palette. Refer to Chapter 6, Creating Custom
User Interfaces in LabVIEW, of Using LabVIEW with TestStand for more
information about using the TestStand UI Controls in LabVIEW.

LabWindows/CVI
To use the TestStand UI Controls with LabWindows/CVI, add the
following files to your project from the <TestStand>\API\CVI
directory:

• tsui.fp—ActiveX API for the TestStand UI Controls

• tsuisupp.fp—ActiveX API for use with less commonly used
interfaces provided by the TestStand UI Controls

• tsutil.fp—Functions that facilitate using the TestStand API and the
TestStand UI Controls with LabWindows/CVI

• tsapicvi.fp—ActiveX API for the TestStand Engine

Include the following header files, located in the <TestStand>\API\CVI
directory, in your source files as needed:

• tsui.h

• tsuisupp.h

• tsutil.h

• tsapicvi.h.

To add a TestStand UI Control to a panel in the LabWindows/CVI UIR
editor, select ActiveX from the Create menu and select a control that has
a name beginning with TestStand UI.

Refer to Chapter 6, Creating Custom User Interfaces in LabWindows/CVI,
of Using LabWindows/CVI with TestStand for more information about
using the TestStand UI Controls in LabWindows/CVI.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-14 ni.com

Visual Studio .NET
To use the TestStand UI Controls with Microsoft Visual Studio .NET, drag
the TestStand UI Controls from the TestStand tab on the Visual Studio
Toolbox onto your form. You must also add a reference to the TSUtil
assembly as described in Table 9-6.

Note If the TestStand tab is not visible in the Visual Studio Toolbox window when you
edit your form, follow these steps to install it. First, exit all running copies of Visual
Studio .NET. Then, run the TestStand Version Switcher utility. Select the current version
of TestStand and click Make Active.

Visual C++
To use the TestStand UI Controls with Visual C++, add the TestStand
Utility (TSUtil) Functions Library to your project as described in the
TestStand Utility Functions Library section of this chapter. The
TSUtilCPP.cpp and TSUtilCPP.h files automatically import the type
libraries for the TestStand API and the TestStand UI Controls.

You can view the header files that the #import directive generates for the
TestStand API type libraries by opening the tsui.tlh, tsuisupp.tlh,
and tsapi.tlh files that Visual C++ creates in your Debug or Release
directory. These header files define a C++ class for each object class in the
TestStand API. The letter I is used as a prefix in class names for ActiveX
controls and objects that you can create without calling another class.

The header files use macros to define a corresponding smart pointer class
for each object class. Each smart pointer class uses the name of its
corresponding class and adds a Ptr suffix. Typically, you only use smart
pointer classes in your application. For example, instead of using the
SequenceFile class, use the SequenceFilePtr class.

Note National Instruments recommends that you use the classes that the #import directive
generates to call the TestStand ActiveX API instead of generating MFC wrapper class files
using the Class Wizard tool.

To add a TestStand UI Control to a dialog box as a resource, select Insert
ActiveX Control from the dialog box context menu and select a control
whose name begins with TestStand UI.

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-15 TestStand Reference Manual

Handling Events
TestStand UI Controls send events to notify your application of user input
and of application events, such as an execution completing. The visible
controls send user input events such as KeyDown or MouseDown.
The manager controls send application state events such as
SequenceFileOpened or UserChanged. You can choose to handle any
number of events according to the needs of your application.

Creating Event Handlers In Your ADE
Table 9-3 describes how to create an event handler in your specific ADE.

Events Handled By Typical Applications
When you create your application, you can direct your application to
handle any subset of the available TestStand UI Control events. However,
an application typically handles the following events—ExitApplication,
Wait, ReportError, DisplaySequenceFile, and DisplayExecution.

Table 9-3. Creating an Event Handler in Your ADE

ADE Description

LabVIEW Register event handler VIs with the Register Event Callback node,
which is located in the ActiveX palette.

Refer to Chapter 6, Creating Custom User Interfaces in LabVIEW,
of Using LabVIEW with TestStand for information about handling
events from the TestStand UI Controls in LabVIEW.

LabWindows/CVI Install ActiveX event callback functions by calling the
TSUI_<object class>EventsRegOn<event name> functions
in tsui.fp.

Refer to Chapter 6, Creating Custom User Interfaces in
LabWindows/CVI, of Using LabWindows/CVI with TestStand for
information about handling events from the TestStand UI Controls
in LabWindows/CVI.

.NET Create .NET control event handlers from the form designer.

C++ (MFC) Create ActiveX event handlers from the Message Maps page of the
Class Wizard dialog box.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-16 ni.com

ExitApplication
The Application Manager control sends this event to request that your
application exit. Handle this event by directing your application to exit
normally. For more information about shutting down your application,
refer to the Startup and Shut Down section of this chapter.

Wait
The Application Manager control sends this event to request that your
application either display or remove a busy indicator. Handle this event by
displaying or removing a wait-cursor according to the value of the
showWait event parameter.

ReportError
The Application Manager control sends this event to request that the
operator interface displays to the user an error that occurs during user input
or during an asynchronous operation. Handle this event by displaying the
error code and description in a dialog box or by appending the error code
and description to an error log.

Note This event indicates an application error, not a sequence execution error. The
BreakOnRunTimeError event indicates a sequence execution error.

DisplaySequenceFile
The Application Manager control sends this event to request that the
application display a particular sequence file. For example, the Application
Manager control sends this event when the user opens a sequence file.
To handle this event, display the file by setting the
SequenceFileViewMgr.SequenceFile property. If your application
only has a single window, call this method on the SequenceFileView
Manager control that resides on that window.

If your application displays each file in a separate window using
separate SequenceFileView Manager controls, call
ApplicationMgr.GetSequenceFileViewMgr to find the
SequenceFileView Manager control that currently displays the file so that
you can activate the window that contains it. If no SequenceFileView
Manager control currently displays the file, a multiple window application
can create a new window that contains a SequenceFileView Manager
control. The application can then set SequenceFileViewMgr.SequenceFile
property of the control to display the file in the new window.

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-17 TestStand Reference Manual

DisplayExecution
The Application Manager control sends this event to request the application
to display a particular execution. For example, the Application Manager
control sends this event when the user starts a new execution. To handle
this event, display the execution by setting the
ExecutionViewMgr.Execution property. If your application only has
a single window, call this method on the ExecutionView Manager control
that resides in that window.

If your application displays each execution in a separate window using
separate ExecutionView Manager controls, call the
ApplicationMgr.GetExecutionViewMgr method to find the
ExecutionView Manager control that currently displays the execution so
that you can activate the window that contains it. If no ExecutionView
Manager control currently displays the execution, a multiple window
application typically creates a new window that contains an ExecutionView
Manager control and sets the ExecutionViewMgr.Execution property of the
control to display the execution in the new window.

Startup and Shut Down
As a final step in the initialization of your application, call the
ApplicationMgr.Start method. This method initializes the
Application Manager control and launches the LoginLogout Front-End
callback if you have not set the ApplicationMgr.LoginOnStart
property to False.

Complete the following steps to shut down your application:

1. If your application holds any references to TestStand objects such
as sequence files or executions, handle the
ApplicationMgr.QueryShutDown event. To respond to the event,
cancel the shut down process or release the TestStand object references
your application holds.

2. Call ApplicationMgr.ShutDown. If this method returns True, exit
your application. If the method returns False, do not exit the
application. Leaving the application running allows the method to shut
down any running executions and unload sequence files. If the shut
down process completes, the Application Manager control sends the
ExitApplication event to notify you that you can now exit the
application. If the shut down process is cancelled, the Application
Manager control sends the ShutDownCancelled event. This occurs
if the user chooses not to terminate a busy execution.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-18 ni.com

3. Exit the application in the event handler you create for the
ApplicationMgr.ExitApplication event. The window in which
the Application Manager control resides must exist until you receive
the ExitApplication event.

Note When you use the TestStand UI Controls to create an Exit button or an Exit menu
item that invokes the Exit command, the button or menu item automatically calls
ApplicationMgr.ShutDown for you.

TestStand Utility Functions Library
The TestStand Utility (TSUtil) Functions Library is a set of functions that
help you to use certain aspects of the TestStand API in particular
programming environments. Many TSUtil functions operate on
environment-specific objects, such as menus, that the environment-neutral
TestStand API cannot access. The functions available in TSUtil vary
according to your programming environment.

To assist operator interface developers, the TSUtil library contains
functions to insert menu items that automatically execute commands that
the TestStand UI Controls library provides. The TSUtil library also
provides functions that help you localize the strings on your user interface.

Refer to the Menus and Menu Items section of this chapter for information
about using TSUtil functions to create menu items that perform common
TestStand commands. Refer to the Localization section of this chapter for
information about how to display application user interface strings in a
selected language.

The following tables describe how to use the TSUtil library in each
programming environment:

Table 9-4. Using the TSUtil Library in LabVIEW

Library Format VIs in the block diagram palette for TestStand.

Help Location VI help inside each VI.

How to Use Insert VIs on the block diagram as needed.
Refer to Using LabVIEW with TestStand for
more information about using the TSUtil
library in LabVIEW.

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-19 TestStand Reference Manual

Table 9-5. Using the TSUtil Library in LabWindows/CVI

Library Format Instrument Driver.

Help Location Function panels (TSUtil.fp).

Files TSUtil.c, TSUtil.h, TSUtil.fp, and
TSUtil.obj (located in the <TestStand>\
API\CVI directory).

How to Use Insert TSUtil.fp into your LabWindows/CVI
project. Include TSUtil.h in your source files
as needed. The names of TestStand-related
functions in this library begin with a TS_
prefix.

Table 9-6. Using the TSUtil Library in .NET Languages

Library Format Assembly.

Help Location In the Object Browser and in the source
window using Intellisense.

Location <TestStand>\API\DotNet\Assemblies\
CurrentVersion.

File NationalInstruments.TestStand.
Utility.dll.

How to Use Add a reference to the assembly to your
project. The classes in this assembly reside in
the National Instruments.
TestStand.Utility namespace.

To add a reference to the assembly, select Add
Reference from the Project menu in Visual
Studio .NET to launch the Add Reference
dialog box. Next, select the .NET tab and click
the File Browse button to launch the Select
Components dialog box. Then, navigate to the
<TestStand>\API\DotNet\Assemblies\

CurrentVersion directory. Select
NationalInstruments.TestStand.

Utility.dll, and click Open. Click OK to
close the Add Reference dialog box.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-20 ni.com

If your programming environment is not described in this section, there is
not a version of TSUtil for your environment. In this case, you can write
your own code that performs equivalently to any functions you need from
the TSUtil library. You can use the source code for one of the existing
TSUtil libraries as a guide.

Menus and Menu Items
TestStand applications that provide non-trivial menus can require a large
amount of source code to build and update the state of menus, and handle
events for menu items. You can greatly reduce the amount of code required
to implement menus in your application by calling TSUtil functions to
create menu items that invoke TestStand commands. These menu items are
automatically dimmed or enabled according to the application state and set
their captions according to the selected language. The menu items execute
their commands automatically so that your application does not need to
handle menu events or provide command implementations.

Your application can also insert sets of dynamic menu items, such as a set
of menu items to open files from the most recently used file list or a set of
menu items that run the current sequence with each available Process
Model entry point. To create TestStand menu items, you must first add
TSUtil to your project as described in the TestStand Utility Functions
Library section of this chapter.

Table 9-7. Using the TSUtil Library in C++ (MFC)

Library Format C++ source code.

Help Location Comments in the C++ header file,
TSUtilCPP.h.

Files TSUtilCPP.cpp and TSUtilCPP.h (located
in the <TestStand>\API\VC directory).

How to Use Add TSUtilCPP.cpp to your project once.
Include TSUtilCPP.h in your source files as
needed. The classes in this library reside in the
TSUtil namespace.

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-21 TestStand Reference Manual

Updating Menus
The contents of a menu can vary, depending on the current selection or
other user input, or due to asynchronous execution state changes. Instead of
updating a menu in response to any event or change that may affect it, it is
simpler to update the state of a menu just before it displays when the user
opens it. Programming environments provide an event that notifies you
when a menu is about to open. Table 9-8 describes the notification method
for each environment.

To handle this notification, use the following TSUtil functions to remove
and reinsert all TestStand menu items from your menus:
RemoveMenuCommands, InsertCommandsInMenu, and CleanupMenu.

InsertCommandsInMenu takes an array of CommandKinds enumeration
constants. Depending on the element value and the application state, each
array element can create a single menu item, a set of several menu items, or
no menu items. The CommandKinds enumeration also provides constants
that expand into the full set of items commonly found in test application
top-level menus, such as the File menu, Debug menu, or Configure menu.

Note You can insert and remove TestStand commands in menus that also contain
non-TestStand menu items.

Refer to the TestStand Utility Functions Library section of this chapter for
the full set of menu support functions specific to your environment and

Table 9-8. Menu Open Notification Methods by ADE

Environment Menu Open Notification Method

LabVIEW <This VI>:Menu Activation? event

Refer to Using LabVIEW with TestStand for
information about how to determine when a
menu is about to open in LabVIEW.

LabWindows/CVI InstallMenuDimmerCallback

Refer to Using LabWindows/CVI with
TestStand for information about how to
determine when a menu is about to open in
LabWindows/CVI.

.NET Form.MenuStart

C++ (MFC) CWnd::OnInitMenuPopup

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-22 ni.com

descriptions of how to use them. Refer to the examples in the
<TestStand>\OperatorInterfaces\NI\Full-Featured directory
for sample code that handles open notification events for menus.

Localization
The Engine.StationOptions.Language property specifies the current
language. Localized TestStand applications use the
Engine.GetResourceString method to obtain text in the current system
language from language resource files. Refer to the Creating String
Resource Files section of Chapter 8, Customizing and Configuring
TestStand, for information about creating your own string resource files.

To localize all of the user-visible TestStand UI Control strings that you
configure at design time, call
ApplicationMgr.LocalizeAllControls. This reduces the number of
strings you must explicitly localize using Engine.GetResourceString by
localizing items such as list column headers in the SequenceView control,
text in the StatusBar pane, captions in the Button control, and captions in
the ListBar page.

Note Buttons and menu items that you connect to commands automatically localize their
caption text. Refer to the Command Connections section of this chapter for more
information about connecting buttons and menu items to commands.

The LocalizeAllControls method operates on TestStand UI Controls only.
For other controls and user interface elements, your application must set
each item of localized text. However, the TSUtil library provides functions
to assist in localizing these other controls and menu items. These functions
are described in Table 9-9.

Table 9-9. TSUtil Library Localization Functions by Environment

Environment TSUtil Library Localization Function

LabVIEW TestStand - Localize Front Panel.vi

TestStand - Localize Menu.vi

TestStand - Get Resource String.vi

LabWindows/CVI TS_LoadPanelResourceStrings

TS_LoadMenuBarResourceStrings

TS_SetAttrFromResourceString

TS_GetResourceString

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-23 TestStand Reference Manual

For more information about the TSUtil library, refer to the TestStand Utility
Functions Library section of this chapter.

Operator Interface Application Styles
Although you can use the TestStand UI Controls to create any type of
application, the following application formats are the most common: single
window, multiple window, or no visible window. Applications of a
particular style tend to share a similar implementation strategy, particularly
with respect to their use of the TestStand manager controls. The following
sections describe implementation strategies for these common application
styles.

Tip Since the structure of your application may not exactly match one of the described
applications, only use these descriptions as a guide. You should implement the approach
that best suits your application.

Single Window
A single window application typically displays one execution and/or
sequence file at a time. The user can select the execution and sequence file
to display from a ListBar, ComboBox, or ListBox control. The examples in
the <TestStand>\OperatorInterfaces\NI\Full-Featured and
<TestStand>\OperatorInterfaces\NI\Simple directories are
single window applications.

The single window application contains one Application Manager control,
one SequenceFileView Manager control, and one ExecutionView Manager
control. To display sequences, you can connect the SequenceFileView
Manager and ExecutionView Manager controls to separate SequenceView
controls, alternate a connection from each manager control to a single

.NET Localizer.LocalizeForm

Localizer.LocalizeMenu

C++ (MFC) Localizer.LocalizeWindow

Localizer.LocalizeMenu

Localizer.LocalizeString

Table 9-9. TSUtil Library Localization Functions by Environment (Continued)

Environment TSUtil Library Localization Function

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-24 ni.com

SequenceView control, or leave one or both manager controls unconnected
to a SequenceView control.

In the examples in the Full-Featured directory, the SequenceFileView
Manager control and ExecutionView Manager control connect to separate
SequenceView controls, but only one SequenceView control is visible at
a time. Visibility is based on whether you select to view sequence files or
executions in the list bar.

In the examples in the Simple directory, the ExecutionView Manager
control connects to the SequenceView control. Since the
SequenceFileView Manager control does not connect to a SequenceView
control, these examples only display sequences for the current execution
and do not display sequences from the selected sequence file.

Multiple Window
A multiple window application has at least one window that always exists
in order to contain the Application Manager control. While this window
may be visible or invisible, it is typically visible and contains controls that
enable the user to open sequence files.

For each sequence file that you open, the application creates a Sequence
File window that contains a SequenceFileView Manager control and a
SequenceView control to which it connects. The application sets the
SequenceFileViewMgr.UserData property to attach a handle, reference,
or pointer that represents the window. When the application receives the
ApplicationMgr.DisplaySequenceFile event, it calls
ApplicationMgr.GetSequenceFileViewMgr to determine whether a
SequenceFileView Manager control is currently displaying the sequence
file. If so, the application retrieves the window from the
SequenceFileViewMgr.UserData property and activates the window.
If there is no window currently displaying the file, the application creates a
new window and sets the SequenceFileViewMgr.SequenceFile property to
display the specified file. Because the window only displays this file,
the application also sets the
SequenceFileViewMgr.ReplaceSequenceFileOnClose property to False.

If a Sequence File window attempts to close and the
SequenceFileViewMgr.SequenceFile property is NULL, the application
allows the window to close immediately. If the
SequenceFileViewMgr.Sequence File property is not NULL, the application
does not close the window. Instead, the application passes the file to the
ApplicationMgr.CloseSequenceFile method. When the application
receives the SequenceFileViewMgr.SequenceFileChanged event with a

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-25 TestStand Reference Manual

NULL sequence file event parameter, it closes the window that holds the
SequenceFileView Manager control.

The Sequence File window contains controls that allow you to execute the
displayed file. For each execution that you start, the application creates an
Execution window that contains an ExecutionView Manager control and a
SequenceView control to which it connects. The application sets the
ExecutionViewMgr.UserData property to attach a handle, reference, or
pointer that represents the window. When the application receives the
ApplicationMgr.DisplayExecution event, it calls
ApplicationMgr.GetExecutionViewMgr to determine whether an
ExecutionView Manager control is currently displaying the execution.
If so, the application retrieves the window from the
ExecutionViewMgr.UserData property and activates the window. If there is
no window currently displaying the execution, the application creates a new
window and sets the ExecutionViewMgr.Execution property to display the
specified execution. Because the window only displays this execution, the
application also sets the ExecutionViewMgr.ReplaceExecutionOnClose
property to False.

If an Execution window attempts to close and the
ExecutionViewMgr.Execution property is NULL, the application allows the
window to close immediately. If the ExecutionViewMgr.Execution
property is not NULL, the application does not close the window and instead
passes the execution to the ApplicationMgr.CloseExecution method. The
application does not immediately close the Execution window to ensure
that it exists until the execution it displays completes. When the application
receives the ExecutionViewMgr.ExecutionChanged event with a null
execution event parameter, it closes the window that holds the
ExecutionView Manager control.

A multiple window application can display multiple child windows instead
of displaying sequence files and executions in separate top-level windows.
Child windows can be simultaneously visible or reside in tab control pages
or similar locations that allow you to easily select which child window
to view.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-26 ni.com

No Visible Window
An application without a visible window is similar to a single window
application except that it does not display its window. The application can
allow its command-line arguments to execute and then exit, or it might
have a different mechanism to determine which files to load and execute.
Although an invisible application does not require an ExecutionView
Manager control, it may use a SequenceFileView Manager control to
provide methods to launch an execution for a selected file. Use the
following SequenceFileView Manager control properties and methods to
launch executions:

• ExecutionEntryPoints

• Run

• RunSelectedSteps

• LoopOnSelectedSteps

• GetCommand

Command-Line Arguments
The Application Manager control automatically processes the command
line that invokes your application when you call ApplicationMgr.Start.
To disable command-line processing, set the
ApplicationMgr.ProcessCommandLine property to False before
calling ApplicationMgr.Start. Refer to the Configuring TestStand
section of Chapter 8, Customizing and Configuring TestStand, for a
description of the command-line arguments that are processed by the
Application Manager control.

Your application can also process the command line to support additional
command-line flags. The ApplicationMgr.CommandLineArguments
property provides the command-line arguments with which your
application was invoked.

Note Any command-line flags that you add to your application must appear after any
TestStand command-line flags because the Application Manager control will stop
processing the command line when it encounters a flag it does not recognize.

Chapter 9 Creating Custom Operator Interfaces

© National Instruments Corporation 9-27 TestStand Reference Manual

Persistence of Application Settings
The TestStand Engine stores Station Option dialog box settings and other
settings that apply to all TestStand applications. However, each operator
interface also stores additional custom settings. These settings include
items such as whether to break on the first step of execution, whether to
break when a step fails, and the list of most recently used sequence files.
The Application Manager control stores these settings in the configuration
file specified by the ApplicationMgr.ConfigFilePath property.

Configuration File Location
The default location of the ApplicationMgr.ConfigFilePath property is
%UserProfile%\Local Settings\Application Data\

OperatorInterface.ini. This path specifies a directory to which the
Windows user who is currently logged in has permission to write files. To
change the configuration file location, set the
ApplicationMgr.ConfigFilePath property before your application
calls ApplicationMgr.Start.

If you specify a relative file path or just a file name, that file location is
relative to the directory that contains your application. If other users who
do not have Windows administrator privileges can run your application,
you must ensure that your configuration file is stored in a location to which
your users have permission to write files.

Adding Custom Application Settings
After your application calls the ApplicationMgr.Start method, complete the
following steps to add your own setting to persist in the configuration file:

1. Access the ApplicationMgr.ConfigFile property to obtain the
PropertyObjectFile that holds the contents of the configuration file.

2. Access the Data property of this property object file to obtain the
PropertyObject that holds the application settings.

3. Ensure your custom setting exists in this PropertyObject by setting a
default value.

To set the default value of your setting, call a method such as
PropertyObject.SetValBoolean with a lookup string such as
"CustomSettings.MyExampleBooleanSetting" and an options
parameter of PropOption_SetOnlyIfDoesNotExist.

Chapter 9 Creating Custom Operator Interfaces

TestStand Reference Manual 9-28 ni.com

4. Call a method such as PropertyObject.SetValBoolean with an
options parameter of PropOption_NoOptions to set your custom
option in response to user input.

5. Call a method such as PropertyObject.GetValBoolean to obtain
the current value of your custom option.

When you call ApplicationMgr.ShutDown or change any Application
Manager control setting, the Application Manager control persists the
application settings to the configuration file. You can also persist the
settings at anytime by calling PropertyObjectFile.WriteFile.

Using the TestStand API With TestStand UI Controls
The TestStand UI Controls greatly reduce the need for an application to
directly call the TestStand API. However, you can still call the TestStand
API directly on objects you create or obtain from the TestStand UI Controls
methods, properties, or events. Note the following guidelines when you call
the TestStand API in an operator interface that uses the TestStand UI
Controls:

• You do not need to create the TestStand Engine. Instead, you can
obtain the Engine object using the ApplicationMgr.GetEngine
method.

• If you create an execution by calling Engine.NewExecution, the
TestStand UI Controls recognize the new execution.

• If you load a sequence file by calling Engine.GetSequenceFileEx,
the TestStand UI Controls are not aware of the file you load. To open
and display a file in the operator interface, you must call
ApplicationMgr.OpenSequenceFile.

• You can obtain sequence file and execution references from events or
from the SequenceFiles and Executions collections.

• If you hold references to TestStand objects, release them in the handler
for the ApplicationMgr.QueryShutdown event if your event
handler does not cancel the shut down process.

© National Instruments Corporation 10-1 TestStand Reference Manual

10
Customizing Process Models
and Callbacks

This chapter describes how to customize the TestStand process models and
callbacks. For detailed information about the TestStand process models,
refer to Appendix A, Process Model Architecture.

Process Models
All process models that TestStand provides identify UUTs, generate test
reports, log results to databases, and display UUT status. These process
models also allow client sequence files to customize various model
operations by overriding model-defined callback sequences.

Process models provide Configuration and Execution entry points that you
use to configure model settings and to run client files under the model.
These entry points are sequences in the process model sequence file and are
typically listed in the Configure and Execute menus of an application.

The models that TestStand provides—Sequential, Parallel, and
Batch—contain the following Execution entry points:

• Test UUTs—Tests and identifies multiple UUTs or UUT batches
in a loop.

• Single Pass—Tests one UUT or a single batch of UUTs without
identifying them.

The TestStand process models also contain the following Configuration
entry points:

• Report Options—Launches the Report Options dialog box, in which
you can configure the location and contents of report files.

• Database Options—Launches the Database Options dialog box, in
which you can configure the location and contents of databases.

• Model Options—Launches the Model Options dialog box, in which
you can configure the number of test sockets and other options related
to process models.

Chapter 10 Customizing Process Models and Callbacks

TestStand Reference Manual 10-2 ni.com

Station Model
You can specify a process model file to use for all sequence files. This
process model file is called the station model file. The Sequential model is
the default station model file. You can use the Station Options dialog box
to select a different station model or to allow individual sequence files to
specify their own process model file.

Refer to the TestStand Help for more information about the Station Options
dialog box.

Specifying a Specific Process Model for a Sequence File
If TestStand is configured to allow individual sequence files to specify their
own process model files, you can set the process model file of a sequence
file in the Sequence File Properties dialog box. You can also specify that a
sequence file does not use a process model.

Refer to the TestStand Help for more information about the Sequence File
Properties dialog box.

Modifying the Process Model
To make changes to the process model that apply wherever the process
model is used, you must modify the process model directly.

TestStand installs the process model sequence
files—SequentialModel.seq, ParallelModel.seq, and
BatchModel.seq—and their supporting files to the <TestStand>\
Components\NI\Models\TestStandModels directory.

If you want to change or enhance the process model files, copy the entire
contents of the <TestStand>\Components\NI\Models\
TestStandModels directory to <TestStand>\Components\User\
Models and make changes to this copy. This practice ensures that newer
installations of TestStand do not overwrite your customizations.

Tip Remember that process models are TestStand sequence files. To modify the behavior
of process models, edit them for desired functionality as you would any other sequence
files. For example, if you want to change the HTML report output for all sequences, copy
reportgen_html.seq from the NI directory to the User directory and then make
changes to that copy.

Chapter 10 Customizing Process Models and Callbacks

© National Instruments Corporation 10-3 TestStand Reference Manual

Process Model Callbacks
Model callbacks allow you to customize the behavior of a process model
for each client sequence file that uses it. By defining one or more Model
callbacks in a process model, you can specify the process model operations
that you can customize from your client sequence file.

Define a Model callback by adding a sequence to the process model file,
marking it as a callback in the Sequence Properties dialog box, and then
calling it from the process model. You can override the callback in the
model sequence file by using the Sequence File Callbacks dialog box
to create a sequence of the same name in the client sequence file.

For example, the default TestStand process model defines a TestReport
callback that generates the test report for each UUT. Normally, the
TestReport callback in the default process model file is sufficient because
it handles many types of test results. You can, however, override the default
TestReport callback by defining a different TestReport callback in a
particular client sequence file using the Sequence File Callbacks
dialog box.

Refer to the TestStand Help for more information about the Sequence File
Callbacks dialog box.

Special Editing Capabilities for Process Model
Sequence Files

The TestStand Sequence Editor has specific features for creating or
modifying process model sequence files.

If you want TestStand to treat a sequence file as a process model, you must
mark it as a process model file. To do so, select Edit»Sequence File
Properties. In the Sequence File Properties dialog box, select the
Advanced tab, and then select Model from the Type ring control.

Figure 10-1 shows the settings on the Advanced tab on the Sequence File
Properties dialog box.

Chapter 10 Customizing Process Models and Callbacks

TestStand Reference Manual 10-4 ni.com

Figure 10-1. Sequence File Type Setting on the Advanced tab
on the Sequence File Properties Dialog Box

Although you edit a process model sequence file in a regular Sequence File
window, the file has special contents. In particular, some of the sequences
in process model files are Model entry points, and some are Model
callbacks. TestStand maintains special properties for entry point and
callback sequences. You can specify the values of these properties when
you edit the sequences in a process model file. When you access the
Sequence Properties dialog box for any sequence in a model file, it contains
a Model tab that allows you to specify whether the sequence is a normal
callback or an entry point sequence.

Normal Sequences
A normal sequence is any sequence other than a callback or entry point. In
a process model file, you use normal sequences as Utility subsequences that
the entry points or callbacks call. When you select Normal from the Type
ring control, nothing else is listed on the Model tab.

Chapter 10 Customizing Process Models and Callbacks

© National Instruments Corporation 10-5 TestStand Reference Manual

Callback Sequences
Model callbacks are sequences that entry point sequences call and that the
client sequence file can override. By marking sequences as callbacks in a
process model file, you specify the set of process model operations that you
can customize. When editing the client file, select Edit»Sequence File
Callbacks to override the callback. Refer to the TestStand Help for more
information about using the Sequence File Callbacks dialog box.

Some Model callbacks, such as the TestReport callback in the default
process model, have implementations sufficient for handling most types of
test results. Other Model callbacks act as placeholders that you can override
with sequences in the client sequence file. For example, the MainSequence
callback in the model file is a placeholder for the MainSequence callback
in the client sequence file.

Entry Point Sequences
Entry point sequences are sequences that you can invoke from the menus in
the TestStand Sequence Editor or Operator Interfaces. You can specify two
different types of entry points: Execution entry points and Configuration
entry points.

• Execution entry point—Runs test programs. Execution entry points
typically call the MainSequence callback in the client sequence file.
The default process model contains two Execution entry points: Test
UUTs and Single Pass. By default, Execution entry points are listed
in the Execute menu. Execution entry points are only listed in the
menu when the active window contains a sequence file that has a
MainSequence callback.

• Configuration entry point—Configures a feature of the process
model. Configuration entry points usually save the configuration
information in a .ini file in the <TestStand>\Cfg directory. By
default, Configuration entry points are listed in the Configure menu.
The default process model contains the Configuration entry point,
Configure Report Options. The Configure Report Options entry point
is listed as Report Options in the Configure menu.

Chapter 10 Customizing Process Models and Callbacks

TestStand Reference Manual 10-6 ni.com

Callbacks
In addition to the Model callbacks, TestStand includes many other callback
sequences that you can customize to meet your specific needs. These
callbacks are divided into two groups—Engine callbacks and Front-End
callbacks.

Engine Callbacks
The TestStand Engine defines a set of Engine callbacks which it invokes at
specific points during execution.

Engine callbacks allow you to configure TestStand to call certain sequences
at various points during your test, including before and after the execution
of individual steps, before and after interactive executions, after loading a
sequence file, or before unloading a sequence file. TestStand defines the set
of Engine callbacks and their names, since the TestStand Engine controls
the execution of steps and the loading and unloading of sequence files.

The Engine callbacks are categorized according to the file in which the
callback sequence appears. You can define Engine callbacks in sequence
files, process model files, and the StationCallbacks.seq file.

TestStand only invokes Engine callbacks in a normal sequence file when
executing steps in the sequence file or loading/unloading the sequence file.
TestStand invokes Engine callbacks in process model files when executing
steps in the model file, steps in sequences that the model calls, and steps in
any nested calls to subsequences. TestStand invokes Engine callbacks in the
StationCallbacks.seq file whenever TestStand executes steps on the
test station.

Note TestStand installs predefined Station Engine callbacks in the
StationCallbacks.seq file in the <TestStand>\Components\NI\
Callbacks\Station directory. Add your own Station Engine callbacks in
the StationCallbacks.seq file in the <TestStand>\Components\User\
Callbacks\Station directory.

Chapter 10 Customizing Process Models and Callbacks

© National Instruments Corporation 10-7 TestStand Reference Manual

Table 10-1. Engine Callbacks

Engine Callback
Where You Define

the Callback
When the Engine
Calls the Callback

SequenceFilePreStep Any sequence file Before the engine executes
each step in the sequence
file.

SequenceFilePostStep Any sequence file After the engine executes
each step in the sequence
file.

SequenceFilePreInteractive Any sequence file Before the engine begins an
interactive execution of
steps in the sequence file.

SequenceFilePostInteractive Any sequence file After the engine completes
an interactive execution of
steps in the sequence file.

SequenceFileLoad Any sequence file When the engine loads the
sequence file into memory.

SequenceFileUnload Any sequence file When the engine unloads
the sequence file from
memory.

SequenceFilePostResultList
Entry

Any sequence file After the engine fills out
the step result for a step in
the sequence file.

SequenceFilePostStepRuntimeError Any sequence file After a step in the sequence
file generates a run-time
error.

SequenceFilePostStepFailure Any sequence file After a step in the sequence
fails.

ProcessModelPreStep Process model file Before the engine executes
each step in any client
sequence file that the
process model calls, and
each step in any resulting
subsequence calls.

Chapter 10 Customizing Process Models and Callbacks

TestStand Reference Manual 10-8 ni.com

ProcessModelPostStep Process model file After the engine executes
each step in any client
sequence file that the
process model calls, and
each step in any resulting
subsequence calls.

ProcessModelPreInteractive Process model file Before the engine begins
interactive execution of
steps in a client sequence
file.

ProcessModelPostInteractive Process model file After the engine begins
interactive execution of
steps in a client sequence
file.

ProcessModelPostResultList
Entry

Process model file After the engine fills out
the step result for a step in
any client sequence file that
the process model calls or
in any resulting
subsequence calls.

ProcessModelPostStepRuntimeError Process model file After a step generates a
run-time error when the
step is in a client sequence
file that the process model
calls or in any resulting
subsequence calls.

ProcessModelPostStepFailure Process model file After a step fails when the
step is in a client sequence
file that the process model
calls or in any resulting
subsequence calls.

StationPreStep StationCallbacks.seq Before the engine executes
each step in any sequence
file.

Table 10-1. Engine Callbacks (Continued)

Engine Callback
Where You Define

the Callback
When the Engine
Calls the Callback

Chapter 10 Customizing Process Models and Callbacks

© National Instruments Corporation 10-9 TestStand Reference Manual

The following are examples of how you can use Engine callbacks:

• Use the SequenceFileLoad callback to ensure that the configuration for
external devices that the subsequence file uses only occurs once during
execution. Usually, you initialize the devices that a sequence requires
by creating steps in the Setup step group for the sequence. However, if
you call the sequence repeatedly, you can move the Setup steps into a
SequenceFileLoad callback for the subsequence file so that they only
run when the sequence file loads.

• Use the StationPreStep and StationPostStep callbacks to accumulate
statistics on all steps that execute on the test station. You can inspect
the name and types of steps that accumulate data on specific steps.

Note If you define a SequenceFilePreStep, SequenceFilePostStep,
SequenceFilePreInteractive, or SequenceFilePostInteractive callback in a model file,
the callback only applies to the steps in the model file.

Note Do not define a SequenceFileLoad or SequenceFileUnload callback in the
StationCallbacks.seq sequence file. TestStand does not call these callbacks.

StationPostStep StationCallbacks.seq After the engine executes
each step in any sequence
file .

StationPreInteractive StationCallbacks.seq Before the engine begins
any interactive execution.

StationPostInteractive StationCallbacks.seq After the engine completes
any interactive execution.

StationPostResultListEntry StationCallbacks.seq After the engine fills out
the step result for a step in
any sequence file.

StationPostStepRuntimeError StationCallbacks.seq After any step generates a
run-time error.

StationPostStepFailure StationCallbacks.seq After any step fails.

Table 10-1. Engine Callbacks (Continued)

Engine Callback
Where You Define

the Callback
When the Engine
Calls the Callback

Chapter 10 Customizing Process Models and Callbacks

TestStand Reference Manual 10-10 ni.com

Note If a callback sequence is empty, TestStand does not invoke an Engine callback. Also,
the process model uses the Engine.EnableCallback method to disable the
ProcessModelPostResultListEntry and SequenceFilePostResultListEntry callbacks when
the Discard Results or Disable Results When Not Required by Model setting is enabled on
the Model Options dialog box.

Note TestStand only calls other Engine callbacks when executing the SequenceFileLoad
and SequenceFileUnload Engine callbacks. TestStand does not call Engine callbacks when
executing the other Engine callbacks.

Front-End Callbacks
Front-End callbacks are sequences in the FrontEndCallbacks.seq file
that are called by operator interface applications. Front-End callbacks
allow multiple operator interfaces to share the same implementation for
a specific operation. The version of FrontEndCallback.seq that
TestStand installs contains one Front-End callback sequence,
LoginLogout. The sequence editor and all operator interfaces included with
TestStand call LoginLogout.

When you implement operations as Front-End callbacks, you write them as
sequences. This allows you to modify a Front-End callback without
modifying the source code for the operator interfaces or rebuilding the
executables for them. For example, to change how the various operator
interfaces perform the login procedure, you only have to modify the
LoginLogout sequence in FrontEndCallbacks.seq.

You can create new Front-End callbacks by adding a sequence to the
FrontEndCallbacks.seq file. You can then invoke this sequence from
each of your operator interface applications using functions in the
TestStand API. However, you cannot edit the source for the TestStand
Sequence Editor and therefore cannot make the sequence editor call new
Front-End callbacks that you create.

Note TestStand installs predefined Front-End callbacks in the
FrontEndCallbacks.seq file in the <TestStand>\Components\NI\Callbacks\
FrontEnd directory. You can add your own Front-End callbacks or override a predefined
callback in the FrontEndCallbacks.seq file in the <TestStand>\Components\
User\Callbacks\FrontEnd directory.

© National Instruments Corporation 11-1 TestStand Reference Manual

11
Type Concepts

This chapter discusses concepts that apply to step types, custom named data
types, and standard named data types in TestStand. This chapter also
describes the Type Palette window.

For an overview of the categories of types, refer to the Step Types and
Standard and Custom Data Types sections of Chapter 1, TestStand
Architecture, of this manual.

Creating and Modifying Types
This section describes the windows and views in which you can create,
modify, or examine data types and step types. This section also describes
how TestStand stores the definitions for data types and step types.

Where You Create and Modify Types
Table 11-1 describes each graphical user interface (GUI) where you can
access data types and step types: the windows, the views, the contents of a
display, and the corresponding files. Each display presents the types that
correspond to the file that you have open.

Table 11-1. GUIs for Accessing Data Types and Step Types

Window
View within
the Window

Contents of
the Display Corresponding Files

Sequence
File
window

Sequence
File Types
view

Tabs for the step
types, custom
data types, and
standard data
types that the
variables and
steps in the
sequence file use.

When you save the contents of the Sequence
File window, TestStand writes the definitions of
the types used in the sequence file to the
sequence file. Refer to the TestStand Help for
more information about the Sequence File
window.

Chapter 11 Type Concepts

TestStand Reference Manual 11-2 ni.com

Station
Globals
window

Global Types
view

Tabs for the
custom data types
and standard data
types that the
station global
variables use.

When you save the contents of the Station
Globals window, TestStand writes the
definitions of the types used in station global
variables to the StationGlobals.ini file in
the <TestStand>\Cfg directory. Refer to the
TestStand Help for more information about the
Station Globals window.

User
Manager
window

Types view Tabs for the
custom data types
and standard data
types that the
User objects use.

All users and user profiles use the User standard
data type. To customize the User standard data
type, add subproperties to it on the Standard
Data Types tab. If any of these subproperties use
custom data types, the custom data types appear
on the Custom Data Types tab.

When you save the contents of the User
Manager window, TestStand writes the
definitions of the types used to define users and
user profiles to the Users.ini file in the
<TestStand>\Cfg directory. Refer to the
TestStand Help for more information about the
User Manager window.

Type
Palette
window

One view for
each type
palette file

Tabs for the step
types, custom
data types, and
standard data
types that you
want to have
available in the
sequence editor at
all times.

By dragging a type into a type palette file in the
Type Palette window, you ensure that the type is
always available even when it is not in the Types
views of the User Manager window, the Station
Globals window, or any of the open Sequence
File windows.

When you save the Type Palette window,
TestStand saves all type palette files.
Typically, type palette files reside in the
<TestStand>\Cfg\TypePalettes
directory. Refer to the Type Palette Window
section of this chapter for more information.

Table 11-1. GUIs for Accessing Data Types and Step Types (Continued)

Window
View within
the Window

Contents of
the Display Corresponding Files

Chapter 11 Type Concepts

© National Instruments Corporation 11-3 TestStand Reference Manual

Storing Types in Files and Memory
For each type that a TestStand file uses, TestStand stores the definition
of the type in the file. You can also specify that a file always saves the
definition for a type, even if it does not currently use the type. Because
many files can use the same type, many files can contain definitions for
the same type. All your sequence files, for example, might contain the
definitions for the Pass/Fail Test step type and the CommonResults
standard data type.

TestStand only allows one definition for each type in memory. Although the
type can appear in multiple views, only one underlying definition of
the type exists in memory. If you modify the type in one view, it updates in
all views. The Find Type command in the sequence editor’s View menu
launches the Find Type dialog box, which contains a list of all types that are
currently in memory. The list identifies the set of files that use each type.

If you load a file that contains a type definition and another type definition
of the same name already exists in memory, TestStand verifies that the
two type definitions are identical. If they are not identical, TestStand
informs you of the conflict through the Type Conflict In File dialog box,
which allows you to resolve the conflict.

Refer to the TestStand Help for more information about the Find Type and
Type Conflict In File dialog boxes.

Type Palette Window
Use the Type Palette window to view and edit Type Palette files. You use
Type Palette files to store the data types and step types that you want to be
available in the sequence editor at all times.

When you create a new type in the Sequence File Types view of a Sequence
File window, the type does not appear in the Insert Local, Insert Global,
Insert Parameter, Insert Field, and Insert Step submenus in other Sequence
File windows. To use the type in other sequence files, you can manually
copy or drag the new type from one Sequence File window to another.
A better approach is to copy or drag the new type to the Type Palette
window or to recreate it there. Each type in a Type Palette file appears in
the appropriate Insert submenu for all windows.

Chapter 11 Type Concepts

TestStand Reference Manual 11-4 ni.com

When you save the contents of the Type Palette window, TestStand writes
the contents of all modified type palette files. Typically, type palette files
are stored in the <TestStand>\Cfg\TypePalettes directory.

You can distribute step types and data types you create to other
machines by installing your type palette file to the
<TestStand>\Cfg\TypePalettes directory. You must prefix the
file names of the type palettes you install with Install_. At startup,
TestStand searches the TypePalettes directory for type palette files with
the Install_ prefix. When TestStand finds a type palette file to install whose
base file name is not the same as any existing type palette, TestStand
removes the Install_ prefix and adds the type palette to the type palette list.
When TestStand finds a type palette file to install whose base file name is
the same as an existing type palette, TestStand merges the types from the
install file into the existing type palette file and then deletes the install file.

The Type Palette window contains tabs that display the step types, custom
data types, and standard data types in the selected type palette file.
Typically, you create new types in the MyTypes.ini type palette file or
in a new type palette file that you create.

Refer to the TestStand Help for more information about the Type Palette
window.

© National Instruments Corporation 12-1 TestStand Reference Manual

12
Standard and Custom Data
Types

This chapter describes how to use data types in TestStand and how to create
and modify custom data types to meet the needs of your application.

Using Data Types
You use data types when you insert variables, parameters, or step
properties. Each view in which you can insert a variable, parameter, or
property features a context menu that contains an Insert item. You can
use the context menu items in the views that are listed in Table 12-1.

Table 12-1. Creating Data Type Instances from Context Menus

Context
Menu Item Location of Context Menu Item Inserted

Insert Global Sequence File Globals view of the
Sequence File window

Sequence file global variable

Insert Parameter Parameters tab in individual sequence
file views in the Sequence File window

Sequence parameter

Insert Local Locals tab in individual sequence file
views in the Sequence File window

Sequence local variable

Insert Global Globals view of the Station Globals
window

Station global variable

Insert User Users view of the User Manager
window

New object with the User data
type

Insert Field Type Palette window and the Types
views in the Sequence File, Station
Globals, or User Manager windows

New element in an existing
data type

Chapter 12 Standard and Custom Data Types

TestStand Reference Manual 12-2 ni.com

With the exception of the Insert User item, all of the context menu items in
Table 12-1 provide a submenu from which you can select a data type. The
submenu includes the following categories of types:

• One of the simple data types that TestStand defines, including the
number, Boolean, string, and object reference data types.

• A named data type. This submenu includes all of the custom named
data types that are currently in the Type Palette window or in the Types
view of the window you are currently editing. The submenu also
includes standard named data types that come with TestStand, such as
Error, Path, and CommonResults. Refer to the Using the Standard
Named Data Types section of this chapter for more information about
the standard named data types.

• An array of elements that all have the same data type.

In the submenu for Insert Parameter, you can also select the Container type.
You cannot add fields to parameters you create with the Container type.
Creating a parameter with the Container type is only useful if you want to
pass an object of any type to the sequence. To do so, you must also turn off
type checking for the parameter.

To create a parameter with a complex data type, you must first create the
data type in the Sequence File Types view or the Type Palette window.
Then select the data type from the Types submenu in the Insert Parameter
submenu.

Figure 12-1 shows the Insert Local submenu. The submenu includes three
custom data types as examples: Fixture, Subassembly, and YieldStatistics.

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-3 TestStand Reference Manual

Figure 12-1. Insert Local Submenu

If the submenu does not contain the data type you require, you must create
the data type in the Type Palette window or one of the type views. If the data
type already exists in another window, drag or copy the data type from the
other window to the window you are editing or to the Type Palette window.

Chapter 12 Standard and Custom Data Types

TestStand Reference Manual 12-4 ni.com

Specifying Array Sizes
When you select an item from the Array of submenu in an Insert submenu,
the Array Bounds dialog box launches.

Figure 12-2 shows the Array Bounds dialog box with settings for a
three-dimensional array.

Figure 12-2. Array Bounds Dialog Box

The first and outermost dimension has five elements, with 0 as the
minimum index and 4 as the maximum index. The second dimension has
ten elements, with 1 as the minimum index and 10 as the maximum index.
The third and innermost dimension has three elements, with –1 as the
minimum index and 1 as the maximum index.

After you create a variable, parameter, or property as an array, you can
modify the array bounds by selecting the Properties item in the context
menu for the variable, parameter, or property in the list view. Select the
Bounds tab that is visible in the Properties dialog box to modify the array
bounds.

Empty Arrays
If you want the array to be empty when you start the execution, enable the
Initially Empty option. When you enable this option, the Upper Bounds
control for each dimension dims. Defining an array as initially empty is
useful if you do not know the maximum array size the sequence requires
during execution or if you want to save memory during the periods of
execution when the sequence does not use the array.

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-5 TestStand Reference Manual

Figure 12-3 shows the Array Bounds dialog box with settings for a
three-dimensional array that is initially empty.

Figure 12-3. Array Bounds Dialog Box with an Initially Empty Array

Display of Data Types
The data type of each variable or property you create is listed in the Type
column next to the variable or property name. If the data type is an array,
the words Array of appear in the Type column, followed by the data type
of the array elements and the range of each dimension. If the data type is a
named data type, the underlying type is listed in the Type column, followed
by the words Instance of Type and the data type name.

Figure 12-4 shows variables with different data types on the Locals tab in
the Sequence File window. Table 12-2 describes the data type of each local
variable in Figure 12-4.

Figure 12-4. Local Variables with Various Data Types

Chapter 12 Standard and Custom Data Types

TestStand Reference Manual 12-6 ni.com

Modifying Data Types and Values
With the exception of resizing arrays, you cannot change the internal
structure of a variable, parameter, or property after you create it. You
cannot change its data type setting, nor can you deviate from the data type.
You can, however, change the contents of the data type itself. Changing the
contents of a data type affects all variables, parameters, and properties that
use the data type.

You can modify the value of a variable, parameter, or property in the list
view in which you create it. For variables and properties, this value is the
initial value when you start execution or call the sequence. For parameters,
this value is the default value if you do not pass an argument value
explicitly. If the data type is a single-valued data type, such as number or
Boolean, the value appears in the Value column of the list view.

Table 12-2. Data Types of the Local Variables

Local Variable Data Type Description

Count Number Predefined by TestStand.

Name String Predefined by TestStand.

IsOk Boolean Predefined by TestStand.

MaxVolts Volts Custom data type.

DeviceEnabled Boolean One-dimensional array of Booleans, with
indexes from 1 to 8.

Impedances ImpedanceTable Custom data type that represents a
two-dimensional array of numbers.

FixtureA Fixture Represents a container that contains multiple
fields with different data types.

ParamsList TestParamList Represents a one-dimensional array of elements
with the TestParams data type. The TestParams
data type represents a container that contains
multiple fields with different data types.

TestClass ObjectReference Predefined by TestStand.

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-7 TestStand Reference Manual

Single Values
You can modify the value of a single-valued data type by selecting
Properties from the context menu for the variable, parameter, or property
in the list view. This launches the Type Properties dialog box. Refer to
the TestStand Help for more information about using the Type Properties
dialog box.

Object References
Object reference properties can contain references to .NET or
ActiveX/COM objects. They are primarily used by the .NET Adapter and
the ActiveX/COM Adapter. If the variable, parameter, or property is an
object reference, you can use the Type Properties dialog box to release the
reference.

You can only set the reference value from within an expression, a code
module using the TestStand API, or by calling the TestStand API directly
using the ActiveX/COM Adapter. TestStand stores ActiveX references as
an IDispatch pointer or IUnknown pointer.

The value you assign to the object reference must be a valid object pointer.
Whenever you assign a non-zero value to an object reference, TestStand
adds a reference to the object for as long as the variable, parameter, or
property contains that value. To release the reference to the object, assign
the variable, parameter, or property a new value or the constant Nothing.
In addition, TestStand automatically releases the reference to the object
when the variable, parameter, or property loses its scope. For example, if a
sequence local variable contains a reference to an object, TestStand releases
the reference when the call to the sequence completes. When you release
all references to a .NET object, the object is marked for garbage collection.
When you release all references to an ActiveX/COM object, the object is
destroyed.

If you have two references, an equality comparison performs a comparison
of the objects’ IUnknown pointers for ActiveX and the pointer values
for .NET.

Note Do not release an object variable by assigning it a value of 0. Instead, assign the
constant Nothing to the variable.

Chapter 12 Standard and Custom Data Types

TestStand Reference Manual 12-8 ni.com

Arrays
If the variable, parameter, or property is an array that contains values, you
access the elements of the array in the list view by selecting View Contents
from the context menu. You can use the Properties item in the context menu
for each array element to modify the initial value.

Dynamic Array Sizing
TestStand allows you to resize an array during execution. In an expression,
you can use the GetNumElements and SetNumElements expression
functions to obtain and modify the upper and lower bounds for a
one-dimensional array. For multi-dimensional arrays or to change the
number of dimensions in the array, you must use the GetArrayBounds and
SetArrayBounds expression functions. You can find the documentation for
these functions on the Operators tab on the Expression Browser dialog box.
Refer to the TestStand Help for more information about expressions.

In a code module, use the GetDimensions and SetDimensions methods of
the PropertyObject class to obtain or set the upper and lower bounds of an
array or to change the number of dimensions. Refer to the TestStand Help
for more information about the GetDimensions and SetDimensions
methods.

Using the Standard Named Data Types
TestStand defines standard named data types, such as Path, Error, and
CommonResults. You can add subproperties to the standard data types,
but you cannot delete any of their built-in subproperties.

Figure 12-5 shows the Standard Data Types tab in the Type Palette window.

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-9 TestStand Reference Manual

Figure 12-5. Standard Data Types Tab in the Type Palette Window

The following sections describe some of the more generally applicable
standard data types.

Path
Use the Path standard data type to store a pathname as a string.

The variables, parameters, and properties that you define using the Path
data type appear in the Edit Paths dialog box, which you can launch by
selecting View»Paths. Refer to the TestStand Help for more information
about the Edit Paths dialog box.

Error and Common Results
TestStand inserts a Results property in every step you create, regardless of
whether you use a built-in step type or a custom step type. The Results
property has at least three subproperties: Error, Status, and
CommonResults.

The Error subproperty uses the Error standard data type. Steps in TestStand
use the Error subproperty to indicate run-time errors. The Error standard
data type is a container that contains three subproperties: Occurred, Code,
and Msg. When a run-time error occurs in a step, the step sets the Occurred
subproperty to True, the Code subproperty to a value that indicates that
source of the error, and the Msg subproperty to a string that describes the
error. You can add more subproperties to the Error standard data type.
In this way, your steps can record extra run-time error information in a
standard way.

Chapter 12 Standard and Custom Data Types

TestStand Reference Manual 12-10 ni.com

The CommonResults standard data type is an object that is initially empty.
By adding subproperties to it, you can add extra result information to all
steps in a standard way.

If you choose to add more subproperties to Error or CommonResults,
newer versions of TestStand will not overwrite them.

Be aware that if you modify CommonResults without incrementing the
type version number, you may see a type conflict when you open other
sequence files. These conflicts can include FrontEndCallbacks.seq
when you are logging in or out. TestStand will automatically prompt you
to increment the version number when saving changes to any data type or
step type.

Creating and Modifying Custom Data Types
You can create and modify data types in the Sequence File Types view of
a Sequence File window, the Global Types view of the Station Globals
window, the Type Palette window, and the Types view of the User
Manager window. Use the Custom Data Types tab to create and modify
custom data types. Use the Standard Data Types tab to add subproperties
to the standard data types.

Note The remainder of this section discusses creating and modifying custom data types
on the Custom Data Types tab. The same information applies to the Standard Data
Types tab.

Creating a New Custom Data Type
To create a new custom data type, select the root node in the tree view so
that the existing custom data types appear in the list view. Right-click the
background of the list view and select Insert Custom Data Type from the
context menu. Figure 12-6 shows the Insert Custom Data Type submenu.

Figure 12-6. Insert Custom Data Type Submenu

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-11 TestStand Reference Manual

The submenu gives you a set of data types from which you can select any
of the simple data types that TestStand defines, including an array of any
type, a container, or a custom or standard named data type.

Selecting an array type from the submenu launches the Array Bounds
dialog box. Use this dialog box to specify the array bounds that TestStand
applies initially to each variable, parameter, or property that you create with
the data type. After you create the variable, parameter, or property, you can
change its array bounds on the Bounds tab on the Type Properties dialog
box. Refer to the Modifying Data Types and Values section of this chapter
for more information about dynamically setting the size of an array.

If you select the Container type from the submenu, TestStand creates the
data type without any fields.

Note When you create new data types, begin your types with a unique ID, such as a
company prefix. Using a unique ID helps to prevent name collisions. For example,
NI_InstrumentConfigurationOptions uses NI as a unique ID.

Customizing Built-In Data Types
You cannot modify NI-installed data types. To create a customized version
of an NI-installed type, copy and rename the type in the sequence editor.

Properties Common to All Data Types
TestStand defines many properties that are common to all data types. These
are called built-in data type properties. To examine and modify the values
of the built-in data type properties, select Properties from the context
menu for a data type in the List view. This launches the Data Type
Properties dialog box. The Data Type Properties dialog box contains the
following tabs: General, Version, Bounds, Cluster Passing, C/C++ Struct
Passing, and .NET Struct Passing.

The following sections provide an overview of each tab. Refer to the
TestStand Help for detailed information about the Data Type Properties
dialog box.

General Tab
Use the General tab to specify an initial value and comment for the
data type.

Chapter 12 Standard and Custom Data Types

TestStand Reference Manual 12-12 ni.com

Property Flags
TestStand includes a set of property flags that you can modify. Access the
Edit Flags dialog box by clicking Advanced in the General tab on the Data
Type Properties dialog box. For more information about the Edit Flags
dialog box, refer to the TestStand Help.

For a description of each of the property flag constants in the TestStand
API, refer to the PropertyFlags Constants and the PropertyObjTypeFlags
Constants topics in the TestStand Help.

Bounds Tab
Use the Bounds tab to define the bounds for array data types. This tab is
only visible for array data types.

Version Tab
Use the Version tab to edit the version information for the data type.

Cluster Passing Tab
Use the Cluster Passing tab to define how TestStand passes instances of
the data type as a cluster to LabVIEW VIs.

C/C++ Struct Passing Tab
Use the C/C++ Struct Passing Tab to define how TestStand passes
instances of the data type as a structure to functions and methods in
C/C++ DLLs.

.NET Struct Passing Tab
Use the .NET Struct Passing tab to define how TestStand passes instances
of the data type as a structure to methods and properties in .NET
assemblies.

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-13 TestStand Reference Manual

Custom Properties of Data Types
You can add any number of fields to a data type or data type subproperty
that you create as a container. To add fields to a container property in a new
or existing data type, right-click the icon for the data type or a data type
subproperty in the list view and select View Contents from the context
menu. For a new data type, the list view is empty. For an existing data type,
the list view displays the fields currently in the data type. Right-click the
background of the list view and select Insert Field from the context menu.
Figure 12-7 shows the Insert Field submenu.

Figure 12-7. Insert Field Submenu

The submenu gives you a set of data types from which you can select any
of the simple data types that TestStand defines, including an array of any
type, a container, or a custom or standard named data type.

To cut, copy, paste, or rename fields, use the context menu that becomes
visible when you right-click the icon for the field in the list view.

© National Instruments Corporation 13-1 TestStand Reference Manual

13
Creating Custom Step Types

This chapter describes how to create custom step types. For more
information about types, refer to Chapter 11, Type Concepts. For more
information about the built-in step types included in TestStand, refer to
Chapter 4, Built-In Step Types.

Creating and Modifying Custom Step Types
TestStand gives you the flexibility to create a custom step type to fit
the specific needs of your application. You can do this by modifying
an existing TestStand built-in step type or creating a new step type.

If you want to change or enhance a TestStand built-in step type, copy the
files to a User subdirectory, then copy and rename the built-in step type and
its supporting modules, and make the changes to the new type and its files.
This practice ensures that a newer installation of TestStand does not
overwrite your customizations. It also makes it easier for you to distribute
your customizations to other users.

To insert a new step type in the Type Palette window or the Sequence Files
Types view, right-click the background of the list view and select Insert
Step Type from the context menu. Use the Copy and Paste items from the
context menu to copy an existing step type.

Note When you create new step types, begin your types with a unique ID, such as a
company prefix. Using a unique ID will prevent name collision. For example,
NI_PropertyLoader uses NI as a unique ID.

The Step Types tab on the Type Palette window shows all the step types in
the selected type palette file. The Step Types tab on the Sequence File
Types view of the Sequence File window only shows the step types that the
steps in the sequence file use.

Chapter 13 Creating Custom Step Types

TestStand Reference Manual 13-2 ni.com

Figure 13-1 shows the Step Types tab in the Type Palette window.

Figure 13-1. Step Types Tab in the Type Palette Window

Creating a New Custom Step Type
Complete the following steps when you are creating new step types in the
Type palette:

1. Specify the menu item name for a step type on the Menu tab on the
Step Type Properties dialog box.

2. Specify the default name for new steps you create from your type and
the description expression for those steps in the General tab on the
Step Type Properties dialog box.

3. Specify the menu item name (and button name) that invoke the editing
dialog box you (optionally) define for your step type in the Edit Step
section of the Substeps tab on the Step Type Properties dialog box.

After you install TestStand, the Step Types tab displays all the built-in step
types, the Custom Data Types tab is empty, and the Standard Data Types tab
contains several standard data types.

Customizing Built-In Step Types
Source code is available for the code modules that the built-in step
types use as substeps. The source code project files are located in the
<TestStand>\Components\NI\StepTypes subdirectory. If you use
these source files as a starting point for step types you create, make your
own copies of these files in the <TestStand>\Components\User\
StepTypes subdirectory and rename them.

Chapter 13 Creating Custom Step Types

© National Instruments Corporation 13-3 TestStand Reference Manual

Note You cannot modify NI-installed types. To create a customized version of an
NI-installed type, copy and rename the type in the sequence editor. You must also copy and
rename any supporting modules from the <TestStand>\Components\NI\StepTypes
directory to the <TestStand>\Components\User\StepTypes directory. Make any
changes to the copy to ensure that newer installations of TestStand do not overwrite your
customizations.

Properties Common to All Step Types
TestStand defines many properties that are common to all step types.
These are called the built-in step type properties. Some built-in step type
properties only exist in the step type itself. These are called class step type
properties. TestStand uses the class step type properties to define how the
step type works for all step instances. Step instances do not contain their
own copies of the class step type properties.

Other built-in step type properties exist in each step instance. These are
called instance step type properties. Each step you create with the step type
has its own copy of the instance step type properties. TestStand uses the
value you specify for an instance step type property in the step type as the
initial value of the property in each new step you create.

Normally, after you create a step, you can change the values of the step’s
instance step type properties. However, when you create a custom step type,
you can prevent users from changing the values of specific instance step
type properties in the steps they create. For example, you can use the Edit
substep of a step type to set the Status Expression for the step. In that case,
you do not want the user to explicitly change the Status Expression value.
TestStand uses this capability in some of the built-in step types, such as the
Numeric Limit Test and String Value Test. To examine and modify the
values of the built-in properties, select Properties from the context menu
for a step type in the list view.

The Default Run Options, Default Post Actions, Default Loop Options,
Default Expressions, Default Switching, and Default Synchronization tabs
display instance properties. These tabs have the same appearance and
behavior as the Run Options, Post Actions, Loop Options, Expressions, and
Synchronization tabs of the Step Properties dialog box for a step instance.
Refer to the TestStand Help for more information about these tabs.

Most of the properties in the other tabs are class properties. The following
sections discuss each of these tabs in detail.

Chapter 13 Creating Custom Step Types

TestStand Reference Manual 13-4 ni.com

General Tab
Use the General tab to specify a name, description, and comment for the
step type. You can also specify an icon and a module adapter.

Property Flags
TestStand includes a set of property flags that you can modify. Access the
Edit Flags dialog box by clicking Advanced on the General tab on the Step
Type Properties dialog box. Typically, you only need to configure property
flags when you develop a relatively sophisticated custom step type. For
more information about the Edit Flags dialog box, refer to the TestStand
Help.

For a description of each of the property flag constants in the TestStand
API, refer to the PropertyFlags and the PropertyObjTypeFlags topics of
the TestStand Help.

Menu Tab
Use the Menu tab to specify the menu item name that appears for the step
type in the Insert Step submenu. The Insert Step submenu appears in the
context menu of individual sequence views in the Sequence File window.
Use the Step Type Menu Editor to configure the organization of the Insert
Step submenu. Refer to the TestStand Help for a description of the Step
Type Menu Editor.

Substeps Tab
Use the Substeps tab to specify substeps for the step type. You use substeps
to define standard actions, other than calling the code module, that
TestStand performs for all instances of the step type. You implement a
substep through a call to a code module. The code modules you call from
substeps are called substep modules. The substeps for a step type define the
editing and run-time behavior for all step instances of that type. For each
step that uses the step type, TestStand calls the same substep modules
with the same arguments.

You cannot add or remove substeps or otherwise alter the step type when
configuring a particular step instance. Although you can specify any
number of substeps for a step type, the list of substeps is not a sequence and
substeps do not have preconditions, post actions, or other execution
options. The order in which Pre- and Post-Step substeps execute is the only

Chapter 13 Creating Custom Step Types

© National Instruments Corporation 13-5 TestStand Reference Manual

execution option you specify. You can specify four categories of substeps
for a step type:

• Pre-Step substeps

• Post-Step substeps

• Edit substeps

• Custom substeps

TestStand calls the Pre-Step substep before calling the code module.
You can specify an adapter and a module to invoke in the Pre-Step substep
in the Step Properties dialog box for the step type. For example, a Pre-Step
substep might call a code module that retrieves measurement configuration
parameters and stores those parameters in step properties for use by the
code module.

TestStand calls the Post-Step substep after calling the code module. You
can specify an adapter and a module to invoke in the Post-Step substep in
the Step Properties dialog box for the step type. A Post-Step substep might
call a code module that compares the values the code module stored in step
properties against limit values that the Edit substep stored in other step
properties.

Invoke the Edit substep by selecting a menu item in the context menu for
the step or by clicking the Add button in the Step Properties dialog box for
the step. The step type specifies the name of the menu item and the caption
of the button. The Edit substep launches a dialog box in which you can edit
the values of the custom step properties. For example, an Edit substep
might display a dialog box in which you specify the high and low limits for
a test. The Edit substep might then store the high and low limit values as
step properties.

Dialog boxes displayed by the specified Edit substep code must be modal.
For example, all dialog boxes except MFC dialog boxes use the
Engine.NotifyStartOfModalDialogEx and
Engine.NotifyEndOfModalDialogEx methods of the TestStand API. Refer
to the modal examples in the <TestStand>\Examples\ModalDialogs
directory.

TestStand does not call Custom substeps. You can use the TestStand API to
invoke a Custom substep from a code module or an operator interface.

Chapter 13 Creating Custom Step Types

TestStand Reference Manual 13-6 ni.com

Source code is available for many of the substep modules that the built-in
step types use. You can find the source code project files in the
<TestStand>\Components\NI\StepTypes directory. If you want to
use existing step type source code as a starting point for your own step type,
copy the files into the <TestStand>\Components\User\StepTypes
directory and use unique filenames to rename the copies.

Note Threads within TestStand executions can be initialized to use either the
single-threaded apartment model or the multi-threaded apartment model. TestStand
executes Edit substeps in threads initialized using the single-threaded apartment model
to allow the substep to open windows that contain ActiveX controls.

Disable Properties Tab
Use the Disable Properties tab to prevent users from modifying the
settings of instance step type properties in individual steps. In this way, you
make the default settings you specify in the Step Type Properties dialog
box non-editable for all step instances.

The Disable Properties tab contains a list of options, in which each option
represents one built-in instance property or a group of built-in instance
properties. When you enable an option, you prevent users from modifying
the value of the corresponding property or group of properties.

Code Templates Tab
Use the Code Templates tab to associate one or more code templates with
the step type. A code template is a set of source files that contain skeleton
code. The skeleton code serves as a starting point for the development of
code modules for steps that use the step type. TestStand uses the code
template when you click Create Code in the Specify Module dialog box
for a step.

TestStand comes with default code templates that you can use for any
step type. You can customize code templates for individual step types. For
the Numeric Limit Test step type, for instance, you might want to include
example code for accessing the high- and low-limit properties in a step.

Template Files for Different Development Environments
Because different module adapters require different types of code modules,
code templates typically correspond to a particular programming language
in a specific development environment. In versions of TestStand prior to
TestStand 3.0, code templates that were designed for use with the
LabVIEW and LabWindows/CVI Adapters contained multiple source files

Chapter 13 Creating Custom Step Types

© National Instruments Corporation 13-7 TestStand Reference Manual

for use in those environments. For example, a previous default code
template included one .c file for the LabWindows/CVI Adapter and
eight VIs for the LabVIEW Adapter, where the multiple VIs corresponded
to the different combinations of parameter options you can set in the Edit
LabVIEW VI Call dialog box.

TestStand 3.0 refers to these code templates as legacy code templates. They
are included to provide backwards compatibility with previous versions of
TestStand. TestStand 3.0 also includes new code templates that support the
new features of the LabVIEW and LabWindows/CVI Adapters.

TestStand uses the name of a directory within the <TestStand>\
CodeTemplates\NI or <TestStand>\CodeTemplates\User
directory as the code template name. TestStand stores the source file for the
module adapter in the directory. TestStand also stores a .ini file in each
subdirectory that contains parameter information and a description string
that TestStand displays for the code template. Table 13-1 lists the
subdirectories that contain the default code templates for each development
environment.

Table 13-1. Locations of Default Code Templates

Subdirectory Name Template Description

DefaultTemplate Legacy default template

DefaultC++.NET Default template for C++ in Microsoft
Visual Studio .NET

DefaultCSharp.NET Default template for C# in Microsoft
Visual Studio .NET

DefaultCVI Default template for C in
LabWindows/CVI

DefaultHTB72_Template Default template for HTBasic 7.2

DefaultHTB80_Template Default template for HTBasic 8.0

DefaultLabVIEW Default template for LabVIEW 7.0
or later

DefaultVB.NET Default template for Microsoft Visual
Basic .NET

DefaultVC++_Template Default template for C++ in Microsoft
Visual Studio 6.0

Chapter 13 Creating Custom Step Types

TestStand Reference Manual 13-8 ni.com

Code templates for the LabVIEW, LabWindows/CVI, and C/C++ DLL
Adapters can have any number of parameters that are compatible with the
data types you can specify in the Specify Module dialog box for those
adapters.

Legacy code templates for the LabVIEW Adapter always specify Test
Data and error out clusters as parameters. The eight different VIs for each
LabVIEW Adapter legacy code template specify various combinations of
the Input Buffer, Invocation Information, and SequenceContext
parameters. When TestStand uses a legacy LabVIEW template VI to create
skeleton code, it chooses the correct VI to use according to the current
settings in the Optional Parameters dialog box.

Legacy code templates for the LabWindows/CVI Adapter always specify
two parameters: a pointer to a tTestData structure and a pointer to a
tTestError structure. When TestStand uses a legacy LabWindows/CVI
template module to create skeleton code, it validates the function prototype
in the template module against this requirement. TestStand reports an error
if the prototype is incorrect.

When TestStand uses a code template for a DLL to create skeleton code,
it compares the parameter list in the source file to the parameter
information on the Module tab. If these sets of information do not match,
TestStand prompts you to select which prototype to use for the skeleton
code. If you choose to use the prototype from the template source file, you
can also request that TestStand update the Module tab to match the source
file. However, the template source file does not contain sufficient
information for TestStand to update the Value controls for the parameters
on the Module tab.

You can specify entries for TestStand to place in the Value controls, as
described in the TestStand Help. TestStand stores this information in
the .ini file in the template subdirectory.

Chapter 13 Creating Custom Step Types

© National Instruments Corporation 13-9 TestStand Reference Manual

Creating and Customizing Code Template Files
Use the Code Templates tab to create a new code template. TestStand
prompts you to specify a subdirectory name and an existing code template
as a starting point. TestStand copies the files for the existing code template
into the new subdirectory in the <TestStand>\CodeTemplates\User
directory and changes the names. Then, you must modify the code template
files in order to customize them.

You can customize the code template files to include example code that
helps the test developer learn how to access the important custom properties
of the step. For most environments, you can add a value parameter to pass
the information from TestStand. For example, to show how to obtain the
high- and low-limit properties in a LabVIEW or LabWindows/CVI code
template for a Numeric Limit Test step, you may customize the prototype
for the code module by specifying the high and low limits as value
parameters.

As another example, you might want to show how to return a measurement
value from a code module. For the LabVIEW, LabWindows/CVI, and
C/C++ DLL Adapters, you can customize the prototype in the code
template by specifying the measurement as a reference parameter.

Multiple Code Templates per Step Type
You can specify more than one code template for a step type. For example,
you might want to have code templates that contain example code for
conducting the same type of tests with different types of instruments or data
acquisition boards. When a step type has multiple code templates and you
click Create Code in the Specify Module dialog box, TestStand prompts
you to choose from a list of templates.

Version Tab
The Version tab for a Step Type Properties dialog box is identical to the
Version tab you use on the Type Properties dialog box for a custom data
type. Refer to the TestStand Help for more information about the
Version tab.

Chapter 13 Creating Custom Step Types

TestStand Reference Manual 13-10 ni.com

Custom Properties of Step Types
You can define any number of custom properties in a step type so that each
step you create with that step type uses those custom properties.

Open the nodes in the tree view of the Step Types tab to display all step
types and their custom properties for the selected file. To display the
custom properties of a step type and its subproperties in the list view, select
the node for the step type and the custom property, respectively, in the tree
view.

From the list view, select View Contents from the context menu to display
the contents of a step type or property. To display the contents of the next
highest level, press <Backspace> in either the tree view or the list view, or
select Go Up 1 Level from the context menu in the list view background.

Figure 13-2 shows the custom properties for the Numeric Limits step.

Figure 13-2. Custom Properties of a Step Type

© National Instruments Corporation 14-1 TestStand Reference Manual

14
Deploying TestStand Systems

This chapter describes the TestStand Deployment Utility and the steps
necessary to successfully deploy a TestStand system from a development
computer to one or more target computers.

TestStand System Components
TestStand systems are composed of a variety of components that work
together to create the entire system. These components can include the
following:

• TestStand Engine and its supporting files

• LabVIEW and LabWindows/CVI Run-Time Engines

• Process models and their supporting files

• Step types and their supporting files

• Configuration files

• Operator interface applications

• Workspace files

• Sequence files

• Code modules and their supporting files

• Hardware drivers

When deploying a TestStand system from a development computer to a
target computer, you must ensure that all of the components that your
system uses are deployed to the target computer. TestStand provides the
TestStand Deployment Utility to assist you with this process.

TestStand Deployment Utility
The TestStand Deployment Utility simplifies the complex process of
deploying a TestStand system by automating many of the steps involved
in deployment, including collecting sequence files, code modules, and
support files for your test system and then creating an installer for
these files.

Chapter 14 Deploying TestStand Systems

TestStand Reference Manual 14-2 ni.com

Setting Up the TestStand Deployment Utility
Complete the following steps to deploy a TestStand test system using the
TestStand Deployment Utility:

1. Identify the components to deploy.

2. Determine whether to create an installer for your system.

3. Create a system workspace file, if necessary.

4. Configure and build the deployment.

The following sections discuss each of these steps.

Identifying Components for Deployment
The TestStand Deployment Utility can create installable images, which are
directories of files to be installed to the target computer, of the following
TestStand components:

• Components located in the <TestStand>\...\User subdirectories.

• A TestStand workspace file and its dependent files, including sequence
files, code modules, and so on.

Additionally, the deployment utility can create an installer that installs
these components with the TestStand Engine, plus components in the
<TestStand>\...\NI subdirectories.

Determining Whether to Create an Installer
With the TestStand Deployment Utility
If you plan to deploy the TestStand Engine and the TestStand components
located in the <TestStand>\...\NI subdirectories, you must use the
TestStand Deployment Utility to create an installer.

You do not need to use the deployment utility to create an installer if you
plan to deploy your TestStand test system using a third party installer
development tool, such as Wise or InstallShield, or by using a source code
or revision control system to deploy your system files to target computers.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-3 TestStand Reference Manual

Creating a System Workspace File
Before deploying your sequence files and code modules, you must create a
workspace file that contains all of the sequence files that your test system
could execute. The deployment utility analyzes those sequence files to
determine which files they reference, such as code module files. Also, add
any files that are not stored in a <TestStand>\...\User subdirectory or
files that are not referenced by your sequence files to your workspace file,
such as the support files required by code module DLLs.

If you are using the TestStand Deployment Utility to deploy only the
TestStand Engine or the components located in the
<TestStand>\...\User subdirectories, you do not need to create a
workspace file for your test system.

Refer to Chapter 2, Sequence Files and Workspaces, for more information
about TestStand workspace files.

Configuring and Building the Deployment
Within the sequence editor, select Tools»Deploy TestStand System to
launch the TestStand Deployment Utility. This launches the Deploy
TestStand System dialog box, in which you can configure the settings for
deploying your test system, including the components to install and
installer settings.

Refer to the TestStand Help for more information about the Deploy
TestStand System dialog box.

Using the TestStand Deployment Utility
This section describes how the TestStand Deployment Utility builds a
deployable test system.

File Collection
When deploying a workspace file, the deployment utility analyzes the
workspace for any dependent files. For example, if your workspace
contains a sequence file, the deployment utility searches the steps in every
sequence of the file to find the referenced code modules. This analysis
continues recursively until all files in the workspace hierarchy are
analyzed.

Chapter 14 Deploying TestStand Systems

TestStand Reference Manual 14-4 ni.com

Since automatically distributing every file used by your sequences could be
problematic, the deployment utility includes a filtering function that
removes potentially unwanted files. For example, if you have steps in your
sequences that call functions in Windows system DLLs, the deployment
utility will not deploy those DLLs to the target computer.

The Filter.ini file, located in the <TestStand>\Components\NI\
Tools\Deployment Utility directory, defines those files that the
deployment utility automatically excludes from any deployment package it
creates. By default, the deployment utility does not deploy any files located
in the <TestStand>\Bin or <TestStand>\...\NI directories.
Additionally, it does not deploy any .exe or .dll files located in the
<Windows> or <Windows>\System32 directories.

You may add automatically excluded files to your workspace file, but do so
with caution to prevent incompatibility issues. For example, if your
development computer operates on Windows XP, and you deploy a
Windows system DLL from that computer to a target computer running
Windows 2000, you will likely experience DLL version incompatibility
issues.

Note The TestStand Deployment Utility does not deploy .NET or ActiveX/COM code
modules. You must manually add these code modules and their supporting files to the
system workspace or install them separately on the target computer.

VI Processing
The deployment utility analyzes all of the LabVIEW VIs that it deploys to
determine their complete hierarchies, including all subVIs, DLLs, external
subroutines, run-time menus, LabVIEW Express configuration diagrams,
and help files that your VIs may reference. It then packages these VIs and
their hierarchies to ensure that they will be executable on systems that do
not have the LabVIEW development system installed.

Note You must have the LabVIEW development system installed on your development
computer in order for the TestStand Deployment Utility to perform VI processing.

Note If your VIs call other VIs dynamically using VI Server, you must add those VIs
manually to your system workspace file.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-5 TestStand Reference Manual

Sequence File Processing
The TestStand Deployment Utility also performs processing on sequence
files in order to remove absolute paths. Absolute paths that are functional
on your development computer may be invalid on the target computer,
especially if the base installation directories are different.

For example, if you have installed TestStand to c:\TestStand on your
development system and to c:\Program Files\National
Instruments\TestStand on your target computer, the absolute path
c:\TestStand\test.dll will be valid on your development computer
but invalid on your target computer.

The deployment utility corrects this potential problem by changing
absolute path references in sequence files to relative paths that initiate from
one of the following search directories:

• Current sequence file directory

• TestStand installation directory

• Windows\System32 directory

• Windows directory

If the target file is located outside of these directories, TestStand uses a path
that is relative to the installation directory and then adds the installation
directory to the list of default search paths during the installation.

Guidelines for Successful Deployment
Follow these guidelines to ensure that your deployment process is
successful:

• Use unique file names—Always use unique file names, even if you
are working with a revision of an existing file. Ambiguous file names
can cause the deployment utility to locate incorrect files, which can
result in incorrect behavior.

• Use relative paths and search paths—Relative paths allow TestStand
to find files even if they were installed in a different location on the
target computer than they were on the development computer. For
example, you can locate a file that was saved in c:\Program Files\
National Instruments\TestStand 3.0\Reports on the
development computer and in c:\TestStand\Reports on the target
computer using the relative path Reports, since the TestStand
installation directory is included in the default search path.

Chapter 14 Deploying TestStand Systems

TestStand Reference Manual 14-6 ni.com

• Manually add any additional search paths to the list of default
search paths on the target computer—You must manually add
search paths to the list of default search paths. The TestStand
Deployment Utility will not copy additional search paths since the new
directories may not exist on the target computer. Also, ambiguous file
names in these search paths can cause TestStand to locate the
wrong file.

• Manually add dynamically-referenced files to your
workspace—Dynamically-referenced files include any sequences
specified by an expression, property loader files specified by
expressions, LabVIEW VIs called using VI Server, and
dynamically-loaded DLLs.

• Manually add any supporting DLLs required by your code
modules to your workspace—Do not add any DLLs that are part
of TestStand or your operating system.

Common Deployment Scenarios
The following examples describe how to use the TestStand Deployment
Utility in common deployment scenarios. To complete the examples, you
will need one development computer containing a complete installation of
TestStand and one target computer.

Deploying the TestStand Engine
1. Launch the TestStand Deployment Utility by selecting Tools»Deploy

TestStand System from within the sequence editor.

2. On the System Source tab, enable the Deploy Files in TestStand User
Directories option.

This option collects files from the <TestStand>\...\User
directories, so that any customizations that you have made to process
models, step types, language strings, and so on, will be distributed to
the target computer.

3. On the Installer Options tab, enable the Install TestStand Engine
option.

4. On the Installer Options tab, click Engine Options to launch the
TestStand Engine Options dialog box, which you use to select the
TestStand components that should be present in the installer.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-7 TestStand Reference Manual

5. In the TestStand Engine Options dialog box, expand Operator
Interfaces»Full-Featured in the tree view.

a. Click the X next to LabWindows/CVI to include the
Full-Featured LabWindows/CVI Operator Interface in the engine
installation. The X should become a green checkmark.

b. Click OK to accept the new settings and close the dialog box.

6. Click Save and save this build as EngineInstaller.tsd.

7. Click Build to create the installer.

8. To use the installer, copy all of the files from the <My Documents>\
TestStand Deployment\Installer directory to a CD or to a
shared directory on your network.

9. Go to your target computer and insert the CD or connect to the
network, and then run the setup.exe application to start the installer.

10. Select the target directory in which to install the TestStand Engine.
Click Next to begin the installation.

11. Once the installation is complete, run the LabWindows/CVI Operator
Interface by selecting Start»Programs»National Instruments»
TestStand 3.0»Operator Interfaces»LabWindows/CVI. Verify that
the TestStand Engine was installed correctly.

Distributing Tests From a Workspace
1. Launch the TestStand Deployment Utility by selecting Tools»Deploy

TestStand System from within the sequence editor.

2. On the System Source tab, enable the Deploy Files from TestStand
Workspace File option.

3. Click the File Browse button, which is located next to the Workspace
File Path control.

4. Browse to the <TestStand>\Examples\Deployment directory and
select the Test.tsw workspace file. Click Open.

5. Select the Distributed Files tab. A dialog box launches to request
permission to analyze the source files. Click Yes.

The deployment utility analyzes the workspace file and its dependent
files.

6. Locate Unused.dll in the tree view. This DLL is not used by the test
system. Click the checkmark located next to the file in the tree view to
remove it from the distribution.

7. On the Installer Options tab, enable the Install TestStand Engine
option.

Chapter 14 Deploying TestStand Systems

TestStand Reference Manual 14-8 ni.com

8. In the TestStand Engine Options dialog box, expand Operator
Interfaces»Full-Featured in the tree view.

a. Click the X next to LabVIEW to include the Full-Featured
LabVIEW Operator Interface in the engine installation.
The X should become a green checkmark.

b. Click OK to accept the new settings and close the dialog box.

9. Click Save to save this build as Test.tsd.

10. Click Build to create an installer.

11. To use the installer, copy all of the files from the <My Documents>\
TestStand\Deployment\Installer directory to a CD or to a
shared directory on your network.

12. Go to your target computer and insert the CD or connect to the
network, and then run the setup.exe application to start the installer.

13. Select a target directory in which to install the tests, and click Next to
begin the installation.

14. Once the installation is complete, launch the LabVIEW Operator
Interface by selecting Start»Programs»National Instruments»
TestStand 3.0»Operator Interfaces»LabVIEW.

15. Load and run <TestStand>\Examples\Deployment\test.seq
to verify the installation.

Adding Dynamically Called Files to a Workspace
1. Start the TestStand Deployment Utility by selecting Tools»Deploy

TestStand System from within the sequence editor.

2. On the System Source tab, enable the Deploy Files from TestStand
Workspace File option.

3. Click the File Browse button, which is located next to the Workspace
File Path control.

4. Browse to the <TestStand>\Examples\Deployment directory and
select the Dynamically_called_sequence.tsw workspace file.
Click Open.

5. Select the Distributed Files tab. A dialog box launches to request
permission to analyze the source files. Click Yes.

The deployment utility analyzes the workspace file and its dependent
files.

Note You should receive a warning in the Status Log on the Build Status tab stating that
the sequence was called using an expression.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-9 TestStand Reference Manual

The deployment utility processes the workspace and updates the
deployed files list. Notice that dynamic.seq is not included in the list.

6. From within the sequence editor, load the following workspace file:
<TestStand>\Examples\Deployment\Dynamically_

called_sequence.tsw.

7. Add <TestStand>\Examples\Deployment\dynamic.seq to this
workspace file and then save the changes to the workspace.

8. On the Distributed Files tab on the TestStand Deployment Utility,
click Analyze Source Files to analyze the modified workspace file.

The deployment utility analyzes the workspace file and its dependent
files.

Note You will receive another warning in the Status Log of the Build Status tab stating
that the sequence was called using an expression. You can ignore this second warning,
since you have just added the sequence to the workspace.

9. Notice that dynamic.seq is now included in the distributed file list.

10. On the Installer Options tab, enable the Install TestStand Engine
option.

11. In the TestStand Engine Options dialog box, expand Operator
Interfaces»Full-Featured in the tree view.

a. Click the X next to C++ (MFC) to include the Full-Featured C++
(MFC) Operator Interface in the engine installation. The X should
become a green checkmark.

b. Click OK to accept the new settings and close the dialog box.

12. Click Save to save the build as Dynamic.tsd.

13. Click Build to create an installer.

14. To use the installer, copy all of the files from the <My Documents>\
TestStand\Deployment\Installer directory to a CD or to a
shared directory on your network.

15. Go to your target computer and insert the CD or connect to the
network, and then run the setup.exe application to start the installer.

16. Select the target directory where you want to install the tests, and click
Next to begin the installation.

Chapter 14 Deploying TestStand Systems

TestStand Reference Manual 14-10 ni.com

17. Once the installation is complete, launch the C++ (MFC) Operator
Interface by selecting Start»Programs»National Instruments»
TestStand 3.0»Operator Interfaces»C++ (MFC).

18. Load and run <TestStand>\Examples\Deployment\
Call_sequence_dynamically.seq to verify the installation.

Distributing an Operator Interface
Before completing this exercise, copy the files in <TestStand>\
OperatorInterfaces\NI\Simple\CVI to <TestStand>\
OperatorInterfaces\User\Simple\CVI.

1. Within the sequence editor, select File»New Workspace to create a
new workspace file. Save this workspace as Deploy Operator
Interface.tsw

2. In the Workspace window, right-click the Workspace icon and select
Insert New Project into Workspace from the context menu. Save this
project as Operator Interface.tpj.

3. In the Workspace window, right-click the Project icon and select
Add Files to Project from the context menu.

4. In the file browse dialog box, browse to <TestStand>\
OperatorInterfaces\User\Simple\CVI\ and change the
Files of Type setting to All Files (*.*).

5. Select both TestStand.exe and TestExec.uir and click Add.

Note If you are prompted to resolve the path, select Use a relative path for the file you
selected. Enable the Apply to All option, and then click OK twice to close the open dialog
boxes.

6. Select File»Save to save the workspace file.

7. Start the TestStand Deployment Utility by selecting Tools»Deploy
TestStand System from within the sequence editor.

8. On the System Source tab, enable the Deploy Files From TestStand
Workspace File option.

9. Browse to the workspace file you saved in Step 6. Click Open.

10. Select the Distributed Files tab and click Yes in the dialog box
requesting permission to analyze the workspace files.

The deployment utility analyzes the workspace file and its dependent
files.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-11 TestStand Reference Manual

11. Locate TestExec.exe in the tree view and click on the file. The File
Properties section to the right of the tree view should update to reflect
this selection.

12. Enable the Create Program Item option and type Simple CVI into
the neighboring string field to add a shortcut menu item for
TestExec.exe.

13. On the Installer Options tab, enable the Install TestStand Engine
option.

14. Click Save to save the build as SimpleCVIOI.tsd.

15. Click Build to create an installer.

16. To use the installer, copy all of the files from the <My Documents>\
TestStand\Deployment\Installer directory to a CD or to a
shared directory on your network.

17. Go to your target computer and insert the CD or connect to the
network, and then run the setup.exe application to start the installer.

18. Select the target directory where you want to install the tests, and click
Next to begin the installation.

19. Once the installation is complete, load and run the Simple CVI
operator interface from the Start»Programs»My TestStand System»
Simple CVI program group to verify the installation.

You have completed this example. For more information about the
TestStand Deployment Utility and using the Deploy TestStand System
dialog box, refer to the TestStand Help.

© National Instruments Corporation A-1 TestStand Reference Manual

A
Process Model Architecture

This appendix discusses the purpose and usage of the process models that
come with TestStand. It also describes the directory structure that TestStand
uses for process model files and the special capabilities that the TestStand
Sequence Editor has for editing process model sequence files.

To better understand the information in this appendix, review the Process
Models section of Chapter 1, TestStand Architecture, which discusses the
purpose of process models, entry points, and the relationship between a
process model and a client sequence file.

TestStand Process Model Architecture
The Sequential, Parallel, and Batch process models all have the same basic
structure for running a test sequence. Using the Test UUTs or Single Pass
entry point, the process models run test sequences, generate reports, and log
UUT results to a database according to your configuration settings.
Figure A-1 illustrates the basic processes that these models follow.

Appendix A Process Model Architecture

TestStand Reference Manual A-2 ni.com

Figure A-1. Process Flow

The main differences between the process models are the number of UUTs
that each process model runs for the Test UTTs or Single Pass entry points
and the way each process model relates to and synchronizes with UUTs.

Log Results to a Database

Initialization

Get UUT Serial Number

Call the Test Sequence

Display the UUT Results

Generate a Report

Cleanup

Get Current Report Options,
Database Options, and

Model Options

Continue
Testing?

Yes

No

Initialization

Call the Test Sequence

Generate a Report

Log Results to a Database

Cleanup

Get Current Report Options,
Database Options, and

Model Options

Test UUTs Process Single Pass Process

Appendix A Process Model Architecture

© National Instruments Corporation A-3 TestStand Reference Manual

TestStand Process Models
Table A-1 lists the TestStand process models and their respective sequence
files.

The Sequential model is the default TestStand process model. The Batch
and Parallel models have features to help you implement test stations that
test multiple UUTs at the same time.

You can create your own process models or modify a copy of a process
model that TestStand provides.

Features Common to all TestStand Process Models
All TestStand process models identify UUTs, generate test reports, log
results to databases, and display UUT status information. These process
models also allow client sequence files to customize various model
operations by overriding model-defined callback sequences.

Process models provide Configuration and Execution entry points which
you can use to configure model settings and to run client files under the
model. Model entry points are typically listed in an application under the
Configure and Execute menus.

TestStand process models have the following Execution entry points:

• Single Pass—Tests one UUT or a single batch of UUTs without
identifying them.

• Test UUTs—Tests and identifies multiple UUTs or UUT batches in
a loop.

Table A-1. TestStand Process Models

Process Model Process Model Sequence File

Sequential Model <TestStand>\Components\NI\Models\

TestStandModels\SequentialModel.seq

Batch Model <TestStand>\Components\NI\Models\

TestStandModels\BatchModel.seq

Parallel Model <TestStand>\Components\NI\Models\

TestStandModels\ParallelModel.seq

Appendix A Process Model Architecture

TestStand Reference Manual A-4 ni.com

Note When you select the Test UUTs entry point to start an execution that continuously
tests UUTs, any configuration changes that you make to the Report, Database, or Model
Options entry points will not affect UUTs tested in that execution.

TestStand process models have the following Configuration entry points:

• Report Options—Launches the Report Options dialog box, in which
you can configure the location and contents of report files.

• Database Options—Launches the Database Options dialog box, in
which you can configure the logging of results to database tables.

• Model Options—Launches the Model Options dialog box, in which
you can configure the number of test sockets and other options related
to process models.

For more information about the dialog boxes associated with the
Configuration entry points, refer to the TestStand Help.

Sequential Model
The most basic process model is the Sequential process model. The
Sequential process model tests one UUT at a time.

Parallel and Batch Models
The Parallel and Batch models have features that make it easier to
simultaneously test groups of similar UUTs. Use these models to run
the same test sequence on multiple UUTs at the same time.

For both the Parallel and Batch models, specify the number of test sockets
in your system in the Model Options dialog box, which you can access by
selecting Configure»Model Options.

Parallel Model
Use the Parallel model to control multiple independent test sockets. The
Parallel model allows you to start and stop testing on any test socket at any
time. For example, if you have five test sockets for testing radios, the
Parallel model allows you to load a new radio into an open test socket while
the other test sockets are testing other radios.

When you select the Single Pass entry point, the Parallel model launches a
separate execution for each test socket without prompting for UUT serial
numbers.

Appendix A Process Model Architecture

© National Instruments Corporation A-5 TestStand Reference Manual

Batch Model
Use the Batch model to control a set of test sockets that test multiple UUTs
as a group. For example, if you have a set of circuit boards attached to a
common carrier, the Batch model ensures that you start and finish testing
all boards at the same time. The Batch model also provides batch
synchronization features that allow you to specify that a step which applies
to the batch as a whole should only run once per batch instead of once for
each UUT. The Batch model also allows you to specify that certain steps or
groups of steps cannot run on more than one UUT at a time or that certain
steps must run on all UUTs at the same time. The Batch model can generate
batch reports that summarize the test results for the UUTs in the batch.

When you select the Single Pass entry point, the Batch model launches a
separate execution for each test socket without prompting for UUT serial
numbers.

Selecting the Default Process Model
To change your default process model, select Configure»Station Options
and click the Model tab. Select a model from the from the Station Model
ring control or click Browse to select a process model sequence file. You
can also use the Sequence File Properties dialog box to specify that a
sequence file always uses a particular process model.

Appendix A Process Model Architecture

TestStand Reference Manual A-6 ni.com

Directory Structure for Process Model Files
The TestStand installer places process model files in the <TestStand>\
Components\NI\Models\TestStandModels directory.

If you want to modify a TestStand process model, copy the
TestStandModels directory to a new subdirectory under the
<TestStand>\Components\User\Models directory. In the new
directory, rename the process model sequence files and any code module
files. Next, update the process model sequence file you are customizing to
call the modules with the new file names you select. By placing your
modifications under <TestStand>\Components\User, you ensure that a
newer installation of TestStand does not overwrite your customizations.

The list of search paths in TestStand includes the subdirectories in
<TestStand>\Components\User. The <TestStand>\Components\
User directory protects your customized components and serves as the
staging area for the components that you include in your own run-time
distribution of TestStand.

When you create a custom process model, you must first establish your
custom process model sequence file as the process model for the station.
Make this assignment on the Model tab on the Station Options dialog box.

Sequential Process Model

Sequences
Figure A-2 shows a list of all the sequences found in the Sequential process
model, SequentialModel.seq. The sequences are divided into four
categories: Execution entry points, Configuration entry points, Model
callbacks, and Utility subsequences.

Appendix A Process Model Architecture

© National Instruments Corporation A-7 TestStand Reference Manual

Figure A-2. Sequences in the Sequential Process Model

1 Execution Entry Points
2 Configuration Entry Points

3 Model Callbacks
4 Utility Subsequences

1

2

3

4

Appendix A Process Model Architecture

TestStand Reference Manual A-8 ni.com

Execution Entry Points
The following sequences are Execution entry points in the Sequential
process model:

• Test UUTs—Initiates a loop that repeatedly identifies and tests UUTs.
When a window for a client sequence file is active, the Test UUTs item
is listed in the Execute menu. For more information about the Test
UUTs entry point, refer to Test UUTs in the Sequential Process Model
section of this appendix.

• Single Pass—Tests a single UUT without identifying it. In essence, the
Single Pass entry point performs a single iteration of the loop that the
Test UUTs entry point performs. When a window for a client sequence
file is active, the Single Pass item is listed in the Execute menu. For
more information about the Single Pass entry point, refer to Single
Pass in the Sequential Process Model section of this appendix.

Configuration Entry Points
The following sequences are Configuration entry points in the Sequential
process model:

• Configure Report Options—Launches the Report Options dialog
box, in which you can specify the contents, format, and pathname of
the test report. The settings in the Report Options dialog box apply to
the test station as a whole. The entry point saves the station report
options to disk. The entry point item is listed as Report Options in the
Configure menu. For more information about report options, refer to
Chapter 6, Database Logging and Report Generation.

• Configure Database Options—Launches the Database Options
dialog box, in which you can specify the database logging options. The
settings in the Database Options dialog box apply to the test station as
a whole. The entry point saves the station database options to disk. The
entry point item is listed as Database Options in the Configure menu.
For more information about database options, refer to Chapter 6,
Database Logging and Report Generation.

• Configure Model Options—Launches the Model Options dialog box,
in which you can specify model options other than database or report
options. The settings in the Model Options dialog box apply to the test
station as a whole. The entry point saves the station model options to
disk. The entry point item is listed as Model Options in the Configure
menu.

Appendix A Process Model Architecture

© National Instruments Corporation A-9 TestStand Reference Manual

Model Callbacks
The following sequences are Model callbacks in the Sequential process
model, which you can override in a client sequence file:

• MainSequence—Test UUTs and Single Pass call this callback to test
a UUT. The MainSequence callback is empty in the process model file.
The client sequence file must contain a MainSequence callback that
performs the tests on a UUT.

• PreUUT—Launches the UUT Information dialog box, which the
operator uses to enter the UUT serial number. The Test UUTs entry
point calls the PreUUT callback at the beginning of each iteration of
the UUT loop. If the operator indicates through the dialog box that no
more UUTs are available for testing, the UUT loop terminates. If the
operator chooses to stop testing, the IdentifyUUT step sets the
ContinueTesting parameter to False.

The ContinueTesting parameter is a local variable that the Test UUTs
sequence passes to the PreUUT Callback sequence. If the operator
enters a UUT serial number, the IdentifyUUT step stores the serial
number in the UUT.SerialNumber parameter, which is a local variable
that the Test UUTs sequence passes to the PreUUT Callback sequence.

• PostUUT—Displays a banner indicating the status of the test that the
MainSequence callback in the client sequence file performs on the
UUT. The Test UUTs entry point calls the PostUUT callback at the end
of each iteration of the UUT loop.

• PreUUTLoop—The Test UUTs entry point calls this callback before
the UUT loop begins. The PreUUTLoop callback in the process model
file is empty.

• PostUUTLoop—The Test UUTs entry point calls this callback after
the UUT loop terminates. The PostUUTLoop callback in the process
model file is empty.

• ReportOptions—Execution entry points call this callback through the
GetReportOptions subsequence. After reading the test station report
options from disk, GetReportOptions calls the ReportOptions callback
to give the client sequence file an opportunity to modify the report
options. For example, you might want to force the report format to be
ASCII-text for a particular client sequence file. The ReportOptions
callback in the process model file is empty.

• DatabaseOptions—Execution entry points call this callback through
the GetDatabaseOptions subsequence. After reading the test station
database options from disk, GetDatabaseOptions calls the
DatabaseOptions callback to give the client sequence file an

Appendix A Process Model Architecture

TestStand Reference Manual A-10 ni.com

opportunity to modify the database options. The DatabaseOptions
callback in the process model file is empty.

• ModelOptions—Execution entry points call this callback through the
GetModelOptions subsequence. After reading the test station model
options from disk, GetModelOptions calls the ModelOptions callback
to give the client sequence file an opportunity to modify the model
options. The ModelOptions callback in the process model file is empty.

• TestReport—Execution entry points call this callback to generate the
contents of the test report for one UUT. You can override the
TestReport callback in the client sequence file if you want to change its
behavior entirely. The default process model defines a test report for a
single UUT as a header, an entry for each step result, and a footer.
If you do not override the TestReport callback, you can override the
ModifyReportHeader, ModifyReportEntry, and ModifyReportFooter
callbacks to customize the test report.

Depending on the settings in the Report Options dialog box, the
TestReport callback determines whether TestStand builds the report
body using sequences or a DLL. If you select the Sequence option, the
TestReport callback calls the AddReportBody sequence in
reportgen_xml.seq, reportgen_html.seq, or
reportgen_txt.seq to build the report body. The sequence report
generator uses a series of sequences with steps that recursively process
the result list for the execution. If you select the DLL option, the
TestReport callback calls a single function in modelsupport2.dll
to build the entire report body before returning. You can access the
project and source code for the DLL built in LabWindows/CVI from
the <TestStand>\Components\NI\Models\TestStandModels
directory.

• ModifyReportHeader—The TestReport callback calls this callback
in order to modify the report header using the client sequence file.
ModifyReportHeader receives the following parameters: the UUT,
the tentative report header text, and the report options. The
ModifyReportHeader callback in the process model file is empty.

• ModifyReportEntry—The TestReport callback calls this callback
in order to modify the entry point for each step result using the client
sequence file. Using subsequences, the TestReport callback calls
ModifyReportEntry for each result in the result list for the UUT.
ModifyReportEntry receives the following parameters: an entry from
the result list, the UUT, the tentative report entry text, the report
options, and a level number that indicates the call stack depth at the
time the step executed. The ModifyReportEntry callback in the process
model file is empty.

Appendix A Process Model Architecture

© National Instruments Corporation A-11 TestStand Reference Manual

Note In the Report Options dialog box, you can choose to use sequences or a DLL to
produce the report body. If you select the DLL option, TestStand generates reports more
efficiently. However, TestStand will not call ModifyReportEntry callbacks if the DLL
option is enabled.

• ModifyReportFooter—The TestReport callback calls this callback
in order to modify the report footer using the client sequence file.
ModifyReportFooter receives the following parameters: the UUT,
the tentative report footer text, and the report options. The
ModifyReportFooter callback in the process model file is empty.

• LogToDatabase—Execution entry points call this callback to
populate a database with the results for one UUT. You can override the
LogToDatabase callback in the client sequence file if you want to
change its behavior entirely. LogToDatabase receives the following
parameters: the UUT, the result list for the UUT, and the database
options.

• Process Setup—Execution entry points call this callback from the
Setup step groups to give the client sequence file an opportunity to
execute any setup steps that must run only once during the execution
of the process model.

• Process Cleanup—Execution entry points call this callback from the
Cleanup step groups to give the client sequence file an opportunity to
execute any cleanup steps that must run only once during the execution
of the process model.

Utility Subsequences
The following sequences are Utility subsequences that are called by the
other sequences in the Sequential process model:

• Get Report Options—Execution entry points call this sequence at the
beginning of an execution. Get Report Options reads the report options
and then calls the ReportOptions callback to give you an opportunity
to modify the report options in the client sequence file.

• Get Station Info—Execution entry points call this sequence at the
beginning of an execution. Get Station Info identifies the test station
name and the current user.

Appendix A Process Model Architecture

TestStand Reference Manual A-12 ni.com

• Get Database Options—Execution entry points call this sequence
at the beginning of an execution. Get Database Options reads the
database options and then calls the DatabaseOptions callback to give
you an opportunity to modify the database options in the client
sequence file.

• Get Model Options—Execution entry points call this sequence at the
beginning of an execution. Get Model Options reads the model options
and then calls the ModelOptions callback to give you an opportunity
to modify the model options in the client sequence file.

Test UUTs
Table A-2 lists the most significant steps of the Test UUTs entry point in
the Sequential process model, in the order that the Test UUTs entry point
performs them.

Table A-2. Order of Actions the Sequential Process Model Test UUTs Entry Point Performs

Action
Number Description Remarks

1 Call PreUUTLoop callback. Callback in the process model file is empty.

2 Call Get Model Options Utility
subsequence.

Reads model options from disk. Calls the
ModelOptions callback to give the client
sequence file an opportunity to modify the
model options.

3 Call Get Station Info Utility
subsequence.

Identifies the test station name and the
current user.

4 Call Get Report Options Utility
subsequence.

Reads report options from disk. Calls the
ReportOptions callback to give the client
sequence file an opportunity to modify the
report options.

5 Call Get Database Options Utility
subsequence.

Reads database options from disk. Calls the
DatabaseOptions callback to give the client
sequence file an opportunity to modify the
database options.

6 Increment the UUT index. —

7 Call PreUUT callback. Obtains the UUT serial number from the
operator.

Appendix A Process Model Architecture

© National Instruments Corporation A-13 TestStand Reference Manual

8 If no more UUTs, go to
Action Number 17.

—

9 Determine the report file pathname. —

10 Clear information from previous loop
iteration.

Discards the previous results and clears the
report.

11 Call MainSequence callback. MainSequence callback in the client
sequence file performs tests on the UUT.

12 Call PostUUT callback. Displays a pass, fail, error, or terminate
banner.

13 Call TestReport callback. Generates a test report for the UUT.

14 Call LogToDatabase callback. Logs test results to a database for the UUT.

15 Write the UUT report to disk. Appends an existing file or creates a new
file.

16 Loop back to Action Number 6. —

17 Call PostUUTLoop callback. Callback in the process model file is empty.

Table A-2. Order of Actions the Sequential Process Model Test UUTs Entry Point Performs (Continued)

Action
Number Description Remarks

Appendix A Process Model Architecture

TestStand Reference Manual A-14 ni.com

Single Pass
Table A-3 lists the most significant steps of the Single Pass entry point in
the Sequential process model, in the order that the Single Pass entry point
performs them.

Table A-3. Order of Actions the Sequential Process Model Single Pass Entry Point Performs

Action
Number Description Remarks

1 Call Get Model Options Utility
subsequence.

Reads model options from disk. Calls the
ModelOptions callback to give the client
sequence file an opportunity to modify the
model options.

2 Call Get Station Info Utility
subsequence.

Identifies the test station name and the
current user.

3 Call Get Report Options Utility
subsequence.

Reads report options from disk. Calls the
ReportOptions callback to give the client
sequence file an opportunity to modify the
report options.

4 Call Get Database Options Utility
subsequence.

Reads database options from disk. Calls the
DatabaseOptions callback to give the client
sequence file an opportunity to modify the
database options.

5 Determine the report file pathname. —

6 Call MainSequence callback. MainSequence callback in the client
sequence file performs tests on the UUT.

7 Call TestReport callback. Generates a test report for the UUT.

8 Write the UUT report to disk. Appends to an existing file or creates a
new file.

9 Call LogToDatabase callback. Logs test results to a database for the UUT.

Appendix A Process Model Architecture

© National Instruments Corporation A-15 TestStand Reference Manual

Parallel Process Model

Sequences
Figure A-3 shows a list of all the sequences found in the Parallel process
model, ParallelModel.seq. These sequences are divided into six
categories: Execution entry points, Utility sequences, hidden Execution
entry points, Configuration entry points, Model callbacks, and Utility
subsequences.

Figure A-3. Sequences in the Parallel Process Model

1 Main Execution Entry Points
2 Utility Sequences

3 Hidden Execution Entry Points
4 Configuration Entry Points

5 Model Callbacks
6 Utility Subsequences

1

2

3

4

5

6

Appendix A Process Model Architecture

TestStand Reference Manual A-16 ni.com

Execution Entry Points
The following sequences are the main Execution entry points in the Parallel
process model:

• Test UUTs—Controls the test socket executions it creates using the
Test UUTs – Test Socket Entry Point sequence. When a window for a
client sequence file is active, the Test UUTs item is listed in the
Execute menu. For more information about the Test UUTs entry point,
refer to Test UUTs in the Parallel Process Model section of this
appendix.

• Single Pass—Controls the test socket executions it creates using the
Single Pass – Test Socket Entry Point sequence. When a window for
a client sequence file is active, the Single Pass item is listed in the
Execute menu. For more information about the Single Pass entry point,
refer to Single Pass in the Parallel Process Model section of this
appendix.

Utility Sequences
The following sequences are Utility sequences in the Parallel process
model that are used by the main Execution entry points:

• Initialize TestSocket—The controlling execution calls this sequence
to initialize the data for and create the test socket executions.

• Tile Execution Windows—The controlling execution calls this
sequence to tile the test socket Execution windows by building a list
of executions and posting a UIMessage to the operator interface
requesting it to tile the Execution windows.

• Monitor Threads—The ProcessDialogRequests sequence calls this
sequence periodically from the controlling execution to poll to see
whether any of the test socket executions have been terminated or
aborted. If any have, it updates the ModelData for that test socket to
indicate its new state, and tells the dialog box to update its display for
that test socket.

• ProcessDialogRequests—The controlling execution calls this
sequence from the Test UUTs sequence. The sequence loops,
waiting for requests that the dialog box enqueues into
ModelData.DialogRequestQueue. The requests are the names of the
sequences to call. When the ProcessDialogRequests sequence receives
such a request, it calls the requested sequence. Additionally, this
sequence periodically calls the Monitor Threads sequence to verify
that the test socket executions are still running and update information
about them if they are not.

Appendix A Process Model Architecture

© National Instruments Corporation A-17 TestStand Reference Manual

• Run UUT Info Dialog—The controlling execution calls this sequence
from a new thread. This sequence initializes and runs the modeless
dialog box that the Test UUTs entry point uses to allow the user to
control the test socket executions.

• Continue TestSocket—Dialog box request callback that the
ProcessRequests sequence calls. This sequence sets a notification
for the test socket that the request specifies allowing the test socket
execution to continue. The test socket execution waits on this
notification in its default implementation of the PreUUT and PostUUT
callbacks.

• Terminate TestSocket—Dialog box request callback that the
ProcessDialogRequests sequence calls. The Terminate TestSocket
sequence terminates the execution for the test socket that the request
specifies.

• Abort TestSocket—Dialog box request callback that the
ProcessDialogRequests sequence calls. The Abort TestSocket
sequence aborts the execution for the test socket that the request
specifies.

• Restart TestSocket—Dialog box request callback that the
ProcessDialogRequests sequence calls. The Restart TestSocket
sequence restarts the execution for the test socket that the request
specifies. After the sequence restarts the execution, the sequence
re-tiles the Execution windows to include the one it restarts.

• Terminate All TestSocket—Dialog box request callback that the
ProcessDialogRequests sequence calls. The Terminate All Test Socket
sequence terminates all of the test socket executions.

• Abort All TestSocket—Dialog box request callback that the
ProcessDialogRequests sequence calls. The Abort All TestSocket
sequence aborts all of the test socket executions.

• Stop All TestSocket—Dialog box request callback that the
ProcessDialogRequests sequence calls. The Stop All TestSocket
sequence sets a flag for each test socket execution telling them to stop
after they complete their current UUT test sequence. The sequence
also sets a notification to allow them to execute to that point without
interruption.

Appendix A Process Model Architecture

TestStand Reference Manual A-18 ni.com

• View TestSocket Report—Dialog box request callback that the
ProcessDialogRequests sequence calls. The View TestSocket Report
sequence launches a report viewer on the report file for the test socket
that the request specifies.

• View TestSocket Report–Current Only—Dialog box request
callback that the ProcessDialogRequests sequence calls. The View
TestSocket Report – Current Only sequence launches a report viewer
for the report last generated for the test socket that the request
specifies. This sequence differs from the View TestSocket Report
sequence in that it only shows the last report rather than the whole
report file.

Hidden Execution Entry Points
The following sequences are hidden Execution entry points in the Parallel
process model, which are used by the main Execution entry points to
initiate test socket executions but are never displayed:

• Test UUTs – Test Socket Entry Point—The controlling execution
uses this entry point to create the test socket executions. If you insert a
step into this sequence, disable the Record Results option for the step.
The Test UUTs – Test Socket Entry Point sequence implements the
Test UUTs process for the test socket executions. For more
information about this entry point, refer to Test UUTs – Test Socket
Entry Point in the Parallel Process Model section of this appendix.

• Single Pass – Test Socket Entry Point—The controlling execution
uses this entry point to create the test socket executions. If you insert a
step into this sequence, disable the Record Results option for the step.
The Single Pass – Test Socket Entry Point sequence implements the
Single Pass process for the test socket executions. For more
information about this entry point, refer to Single Pass – Test Socket
Entry Point in the Parallel Process Model section of this appendix.

Configuration Entry Points
The following sequences are Configuration entry points in the Parallel
process model:

• Configure Report Options, Configure Database Options, and
Configure Model Options—For more information about these
sequences, refer to Configuration Entry Points in the Sequential
Process Model section of this appendix.

Appendix A Process Model Architecture

© National Instruments Corporation A-19 TestStand Reference Manual

Model Callbacks
The following sequences are Model callbacks in the Parallel process model,
which you can override with a client sequence file:

• MainSequence—The Test UUTs – Test Socket Entry Point and
Single Pass – Test Socket Entry Point sequences call this callback to
test a UUT. The client sequence file must contain a MainSequence
callback that performs the tests on a UUT. The MainSequence callback
is empty in the process model file.

• PreUUT—Calls into the modeless dialog box that the controlling
execution creates, which the operator uses to enter UUT serial
numbers for the test sockets. The Test UUTs – Test Socket Entry Point
sequence calls the PreUUT callback at the beginning of each iteration
of the UUT loop. If the operator indicates through the dialog box that
no more UUTs are available for testing, the UUT loop terminates.
If the operator chooses to stop testing, the code for the dialog box sets
the TestSocket.ContinueTesting parameter to False. If the operator
enters a serial number, the code for the dialog box stores the serial
number in the TestSocket.UUT.SerialNumber parameter.

• PostUUT—Calls into the modeless dialog box that the controlling
execution creates to tell it to display a banner indicating the result of
the test that the MainSequence callback in the client sequence file
performs on the UUT. The Test UUTs – Test Socket Entry Point calls
the PostUUT callback at the end of each iteration of the UUT loop.

• PreUUTLoop—The Test UUTs – Test Socket Entry Point sequence
calls this callback before the UUT loop begins. The PreUUTLoop
callback in the process model file is empty.

• PostUUTLoop—The Test UUTs – Test Socket Entry Point sequence
calls this callback after the UUT loop terminates. The PostUUTLoop
callback in the process model file is empty.

• ReportOptions, DatabaseOptions, ModelOptions, TestReport,
ModifyReportHeader, ModifyReportEntry,
ModifyReportFooter, and LogToDatabase—For more information
about these sequences, refer to Model Callbacks in the Sequential
Process Model section of this appendix.

Appendix A Process Model Architecture

TestStand Reference Manual A-20 ni.com

• Process Setup—The Test UUTs and Single Pass entry points call this
callback from the Setup step group to give the client sequence file an
opportunity to execute any setup steps that must run only once during
the execution of the process model. These setup steps are only run from
the controlling execution. The test socket executions do not call this
callback.

• Process Cleanup—The Test UUTs and Single Pass entry points call
this callback from the Cleanup step group to give the client sequence
file an opportunity to execute any cleanup steps that must run only
once during the execution of the process model. These cleanup steps
are only run from the controlling execution. The test socket executions
do not call this callback.

Utility Subsequences
The following sequences are Utility subsequences in the Parallel process
model, which are called by the other sequences in the Parallel process
model:

• Get Station Info, Get Report Options, Get Database Options, and
Get Model Options—For more information about these sequences,
refer to Utility Subsequences in the Sequential Process Model section
of this appendix.

Appendix A Process Model Architecture

© National Instruments Corporation A-21 TestStand Reference Manual

Test UUTs
The Test UUTs entry point is the sequence that the controlling execution
runs. Table A-4 lists the most significant steps of the Test UUTs entry point
in the order that they are performed.

Table A-4. Order of Actions the Parallel Process Model Test UUTs Entry Point Performs

Action
Number Description Remarks

1 Call Get Model Options Utility
subsequence.

Reads model options from disk. Calls the
ModelOptions callback to give the client
sequence file an opportunity to modify the
model options.

2 Call Get Station Info Utility
subsequence.

Identifies the test station name and the
current user.

3 Call Get Report Options Utility
subsequence.

Reads report options from disk. Calls the
ReportOptions callback to give the client
sequence file an opportunity to modify the
report options.

4 Call Get Database Options Utility
subsequence.

Reads database options from disk. Calls the
DatabaseOptions callback to give the client
sequence file an opportunity to modify the
database options.

5 Call Run UUT Info Dialog Utility
subsequence.

Creates a modeless dialog box that displays
information and gathers serial numbers for
the test socket executions.

6 Determine the report file pathname. Determines the report file pathname to use
if the report options are configured so that
all UUT results for the model are written to
the same file.

7 Create and initialize test socket
executions.

For more information about the
Test UUTs – Test Socket Entry Point
sequence and what test executions do, refer
to Table A-5.

8 Call ProcessDialogRequests. Waits for dialog box requests in a loop until
the model is ready to be shut down.

Appendix A Process Model Architecture

TestStand Reference Manual A-22 ni.com

Test UUTs – Test Socket Entry Point
The Test UUTs – Test Socket entry point is the sequence that the test socket
executions run. The controlling execution creates the test socket executions
in the Test UUTs entry point sequence. Table A-5 lists the most significant
steps of the Test UUTs – Test Socket entry point in the order that they are
performed.

Table A-5. Order of Actions the Parallel Process Model Test UUTs – Test Socket Entry Point Performs

Action
Number Description Remarks

1 Call PreUUTLoop callback. Callback in the process model file is empty.

2 Increment the UUT index. —

3 Clear information from previous loop
iteration.

Discards the previous results and clears the
report and failure stacks.

4 Call PreUUT callback. Obtains the UUT serial number from the
operator.

5 If no more UUTs, go to
Action Number 13.

—

6 Determine the report file pathname. —

7 Call MainSequence callback. MainSequence callback in the client
sequence file performs the tests on the UUT.

8 Call PostUUT callback. Tells the modeless dialog box that the
controlling execution creates to display a
pass, fail, error, or terminate banner for this
test socket.

9 Call TestReport callback. Generates a test report for the UUT.

10 Call LogToDatabase callback. Logs test results to a database for the UUT.

11 Write the UUT report to disk. Appends to an existing file or creates a new
file.

12 Loop back to Action Number 2. —

13 Call PostUUTLoop callback. Callback in the process model file is empty.

Appendix A Process Model Architecture

© National Instruments Corporation A-23 TestStand Reference Manual

Single Pass Entry Point
The Single Pass entry point is the sequence that the controlling execution
runs. Table A-6 lists the most significant steps of the Single Pass entry point
in the order that they are performed.

Table A-6. Order of Actions the Parallel Process Model Single Pass Entry Point Performs

Action
Number Description Remarks

1 Call Get Model Options Utility
subsequence.

Reads model options from disk. Calls the
ModelOptions callback to give the client
sequence file an opportunity to modify the
model options.

2 Call Get Station Info Utility
subsequence.

Identifies the test station name and the
current user.

3 Call Get Report Options Utility
subsequence.

Reads report options from disk. Calls the
ReportOptions callback to give the client
sequence file an opportunity to modify the
report options.

4 Call Get Database Options Utility
subsequence.

Reads database options from disk. Calls the
DatabaseOptions callback to give the client
sequence file an opportunity to modify the
database options.

5 Determine the report file pathname. Determines the report file pathname to use
if the report options are configured so that
all UUT results for the model are written to
the same file.

6 Create and initialize test socket
executions.

For more information about the
Single Pass – Test Socket Entry Point
sequence and what test executions do, refer
to Table A-7.

7 Wait for test socket executions to
complete.

—

Appendix A Process Model Architecture

TestStand Reference Manual A-24 ni.com

Single Pass – Test Socket Entry Point
The Single Pass – Test Socket entry point is the sequence that the test
socket executions run. The controlling execution creates the test socket
executions in its Single Pass entry point sequence. Table A-7 lists the most
significant steps of the Single Pass – Test Socket entry point in the order
that they are performed.

Batch Process Model

Sequences
Figure A-4 shows a list of all the sequences found in the Batch process
model, BatchModel.seq. These sequences are divided into the following
categories: main Execution entry points, Utility sequences, hidden
Execution entry points, Configuration entry points, Model callbacks, and
Utility subsequences.

Table A-7. Order of Actions the Parallel Process Model Single Pass – Test Socket Entry Point Performs

Action
Number Description Remarks

1 Determine the report file pathname. —

2 Call MainSequence callback. MainSequence callback in the client
sequence file performs the tests on the UUT.

3 Call TestReport callback. Generates a test report for the UUT.

4 Call LogToDatabase callback. Logs test results to a database for the UUT.

5 Write the UUT report to disk. Appends to an existing file or creates a
new file.

Appendix A Process Model Architecture

© National Instruments Corporation A-25 TestStand Reference Manual

Figure A-4. Sequences in the Batch Process Model

1 Main Execution Entry Points
2 Utility Sequences
3 Hidden Execution Entry Points

4 Utility Sequence
5 Configuration Entry Points
6 Model Callbacks

7 Utility Subsequences
8 Model Callbacks

1

2

3

4

5

6

7

8

Appendix A Process Model Architecture

TestStand Reference Manual A-26 ni.com

Main Execution Entry Points
The following sequences are the main Execution entry points in the Batch
process model:

• Test UUTs—Runs in the controlling execution of the process model.
TestUUTs creates a separate execution for each test socket using the
Test UUTs – Test Socket Entry Point sequence, adds the main threads
of those executions to a Batch Synchronization object, and controls the
flow of execution using queues and notifications such that, all test
socket executions execute the Main sequence of the client sequence
file together as a group. After a group of UUTs executes, this sequence
generates a batch report, loops back around to run the client sequence
file on the next group of UUTs, and controls the subsidiary test socket
executions to keep them synchronized. When a window for a client
sequence file is active, the Test UUTs item is listed in the Execute
menu. For more information about the Test UUTs entry point, refer to
Test UUTs in the Batch Process Model section of this appendix.

• Single Pass—Runs in the controlling execution of the process model.
Singe Pass creates a separate execution for each test socket using the
Single Pass–Test Socket Entry Point sequence, adds the main threads
of those executions to a Batch Synchronization object, and controls the
flow of execution using queues and notifications such that, all test
socket executions execute the Main sequence of the client sequence
file together as a group. After the group of UUTs executes, this
sequence generates a batch report and waits for all subsidiary
executions to complete. When a window for a client sequence file is
active, the Single Pass item is listed in the Execute menu. For more
information about the Single Pass entry point, refer to Single Pass in
the Batch Process Model section of this appendix.

Utility Sequences
The following Utility sequences are used by the main Execution entry
points in the Batch process model:

• Restart TestSocket—Dialog box request callback that the
ProcessDialogRequests sequence calls. This callback restarts the
execution for the test socket that the request specifies.

• Initialize TestSocket—Called by the controlling execution, initializes
the data for and creates the test socket executions.

• Monitor Batch Threads—ProcessDialogRequests,
ProcessTestSocketRequests, and WaitForTestSocket call this sequence
periodically from the controlling execution to poll whether any of the
test socket executions have been terminated or aborted. If any have,

Appendix A Process Model Architecture

© National Instruments Corporation A-27 TestStand Reference Manual

Monitor Batch Threads updates the ModelData parameter for that test
socket to indicate its new state and tells the dialog box to update its
display for that test socket.

• Tile Execution Windows—Called by the controlling execution, tiles
the test socket Execution windows by building a list of executions and
posting a UIMessage to the operator interface, requesting that the
operator interface tile the Execution windows. This sequence only tiles
running, non-disabled test socket executions.

• Add TestSocket Threads to Batch—The Test UUTs and Single Pass
entry points call this sequence from the controlling execution to add
the main threads of the test socket executions to a Batch
Synchronization object. The threads remove themselves from the
batch after running the Main sequence of the client sequence file.
Removal from the batch is done in the Test UUTs – Test Socket Entry
Point and the Single Pass – Test Socket Entry Point sequences.

• Notify TestSocket Threads—The controlling execution calls this
sequence to tell the running test socket execution threads to continue
executing from their last call to SendControllerRequest in which they
block. This sequence optionally waits for each test socket to get to its
next call—SendControllerRequest, which is the next synchronization
point—before telling the next test socket to go. This ensures serial
execution of the test socket executions for the sections of their
sequences following the location at which they currently block.

• All TestSockets Waiting?—Returns True if all running test sockets
are waiting for the WaitingForRequest parameter or if all test sockets
are stopped.

• ProcessTestSocketRequests—The controlling execution calls this
sequence to wait for the test socket executions to synchronize at the
appropriate point in the execution. When all running test sockets are at
the appropriate point in their executions, the sequence returns,
allowing the controlling execution to continue. While waiting for the
test sockets, this sequence monitors the test socket threads to make
sure they are still running. If all test sockets stop running, this sequence
will return to allow the controlling sequence to continue.

• WaitForTestSocket—The controlling execution calls this sequence
from the Notify TestSocket Threads sequence to wait for a test socket
execution to receive its next controller request, such as a
synchronization point, before the next test socket execution continues.
This guarantees that the controlling execution only allows one test
socket to run particular sections of its sequence at a time. This
sequence is used to write the test socket reports to a file in test socket

Appendix A Process Model Architecture

TestStand Reference Manual A-28 ni.com

index order when the configuration of report options specifies that they
are to write reports to the same file.

• ProcessDialogRequests—Called by the controlling execution from
the Test UUTs sequence. ProcessDialogRequest loops while waiting
for requests that the dialog box enqueues into the
ModelData.DialogRequestQueue. These requests are the names of the
sequences to call. When the ProcessDialogRequests sequence receives
a request, it calls the requested sequence. Additionally, this sequence
periodically calls the Monitor Batch Threads sequence to make sure
that the test socket executions are still running and to update
information about them if they are not.

• Run Batch Info Dialog—The controlling execution calls this
sequence from a new thread in the Test UUTs entry point. The Run
Batch Info Dialog sequence initializes and runs the dialog box that
allows you to enter serial numbers and view the results for a particular
run of the batch.

• View TestSocket Report—Dialog box request callback that the
ProcessDialogRequests sequence calls. The View TestSocket Report
sequence launches a report viewer on the report file for the test socket
that the request specifies.

• View TestSocket Report – Current Only—Dialog box request
callback that the ProcessDialogRequests sequence calls. This
sequence launches a report viewer for the last report generated for
the test socket that the request specifies. The View TestSocket
Report – Current Only sequence differs from the View TestSocket
Report sequence in that it only shows the last report, rather than the
whole report file.

• View Batch Report—Dialog box request callback that the
ProcessDialogRequests sequence calls. This sequence launches
a report viewer on the report file for the batch report.

• View Batch Report – Current Only—Dialog box request callback
that the ProcessDialogRequests sequence calls. This callback launches
a report viewer for the last batch report generated. The View Batch
Report – Current Only sequence differs from the View Batch Report
sequence in that it only shows the last report, rather than the whole
batch report file.

Appendix A Process Model Architecture

© National Instruments Corporation A-29 TestStand Reference Manual

Hidden Execution Entry Points
The following hidden Execution entry points in the Batch process model
are used by the main Execution entry points to start the test socket
executions. The hidden Execution entry points are never displayed.

• Test UUTs – Test Socket Entry Point—The controlling execution
uses the entry point to create the test socket executions. If you insert a
step into this sequence, disable the Record Results option for the step.
This sequence implements the Test UUTs entry point for the test
socket executions. For more information about this entry point, refer to
Test UUTs – Test Socket Entry Point in the Batch Process Model
section of this appendix.

• Single Pass – Test Socket Entry Point—The controlling execution
uses the entry point to create the test socket executions. If you insert a
step into this sequence, disable the Record Results option for the step.
This sequence implements the Single Pass entry point for the test
socket executions. For more information about this entry point, refer to
Single Pass – Test Socket Entry Point in the Batch Process Model
section of this appendix.

Utility Sequence
This Utility sequence in the Batch process model is used by the hidden test
socket Execution entry points:

• SendControllerRequest—The test socket executions call this
sequence to synchronize the controlling execution at various locations
in their sequences. The test socket executions pass string parameters
that indicate the reason and location at which they are attempting to
synchronize with the other executions. When all of the test socket
executions that are running synchronize with the controlling sequence
at the same location by calling the SendControllerRequest sequence,
the controlling execution’s sequence then performs operations and tells
the test socket execution when to continue.

Configuration Entry Points
The following sequences in the Batch process model are the Configuration
entry points in the Batch process model:

• Configure Report Options, Configure Database Options, and
Configure Model Options—For more information about these
sequences, refer to Configuration Entry Points in the Sequential
Process Model section of this appdendix.

Appendix A Process Model Architecture

TestStand Reference Manual A-30 ni.com

Model Callbacks
The following sequences in the Batch process model are Model callbacks,
which you can use to override in a client sequence file:

• MainSequence—The Test UUTs – Test Socket Entry Point and
Single Pass – Test Socket Entry Point sequences call this callback to
test a UUT. The client sequence file must contain a MainSequence
callback that performs the tests on a UUT. The MainSequence callback
is empty in the process model file.

• PreUUT—The test socket executions call this callback. The
implementation of this sequence is empty in the Batch process model.
You can override this callback in the client sequence file to get the
serial number for the UUT. If you choose to do this, you should also
override the PreBatch callback. In the Batch model, the PreBatch
callback displays a dialog box to get the serial numbers for all of the
UUTs in the batch. You can find an example illustrating how to
override these callbacks in the <TestStand>\Examples\
Callbacks\BatchModel directory.

• PostUUT—The test socket executions call this callback. The
implementation of this sequence is empty in the Batch process model.
You can override this callback in the client sequence file to display the
result status for a UUT. If you choose to do this, you should also
override the PostBatch callback. In the Batch model, the PostBatch
callback displays a dialog box to show the result status for all of the
UUTs in the batch. You can find an example illustrating how to
override these callbacks in the <TestStand>\Examples\
Callbacks\BatchModel directory.

• PreUUTLoop—The Test UUTs – Test Socket Entry Point sequence
calls this callback before the UUT loop begins. The PreUUTLoop
callback in the process model file is empty.

• PostUUTLoop—The Test UUTs – Test Socket Entry Point sequence
calls this callback after the UUT loop terminates. The PostUUTLoop
callback in the process model file is empty.

• ReportOptions, DatabaseOptions, ModelOptions, TestReport,
ModifyReportHeader, ModifyReportEntry,
ModifyReportFooter, and LogToDatabase—For more information
about these sequences, refer to Model Callbacks in the Sequential
Process Model section of this appendix.

• Process Setup—The Test UUTs and Single Pass entry points call this
callback from the Setup step group to give the client sequence file an
opportunity to execute any setup steps that must run only once during
the execution of the process model. These setup steps are run from the

Appendix A Process Model Architecture

© National Instruments Corporation A-31 TestStand Reference Manual

controlling execution only. The test socket executions do not call this
callback.

• Process Cleanup—The Test UUTs and Single Pass entry points call
this callback from the Cleanup step groups to give the client sequence
file an opportunity to execute any cleanup steps that must run only
once during the execution of the process model. These cleanup steps
are run from the controlling execution only. The test socket executions
do not call this callback.

Utility Subsequences
The following Utility subsequences in the Batch process model are called
by other sequences within the Batch process model:

• Get Station Info, Get Report Options, Get Database Options, and
Get Model Options—For more information about these sequences,
refer to Utility Subsequences in the Sequential Process Model section
of this appendix.

• PreBatch—Displays a dialog box in which the operator enters the
batch and UUT serial numbers. You can override this in the client
sequence file to change or replace this action. You can find an example
illustrating how to override this callback in the <TestStand>\
Examples\Callbacks\BatchModel directory.

• PostBatch—Displays a pass, fail, error, or terminated banner for each
test socket and allows viewing of batch and UUT reports. You can
override this callback in the client sequence file to change or replace
this action. You can find an example illustrating how to override this
callback in the <TestStand>\Examples\Callbacks\
BatchModel directory.

• PreBatchLoop—The process model calls this callback before looping
on a batch of UUTs. This callback is empty in the process model file.
You can override this callback in the client sequence file to perform an
action before the batch is tested.

• PostBatchLoop—The process model calls this callback after looping
on a batch of UUTs. This callback is empty in the process model file.
Override this callback in the client sequence file to perform an action
after all batches of UUTs are tested.

Appendix A Process Model Architecture

TestStand Reference Manual A-32 ni.com

Model Callbacks
The following sequences are Model callbacks in the Batch process model
that are unique to the model and called by the main Execution entry points:

• BatchReport—The Test UUTs and Single Pass entry points call this
callback to generate the contents of the batch report for the UUTs that
ran in the last batch. You can override the BatchReport callback in the
client sequence file if you want to change its behavior entirely. The
Batch process model defines a batch report for a single group of UUTs
as a header, an entry for each UUT result, and a footer. If you do not
override the BatchReport callback, you can override the
ModifyBatchReportHeader, ModifyBatchReportEntry, and
ModifyBatchReportFooter callbacks to customize the batch report.

• ModifyBatchReportHeader—The BatchReport callback calls this
callback so that the client sequence file can modify the batch report
header. ModifyBatchReportHeader receives the following parameters:
the batch serial number, the tentative report header text, and the report
options. The ModifyBatchReportHeader callback in the process model
file is empty.

• ModifyBatchReportEntry—The BatchReport callback calls this
callback so that the client sequence file can modify the entry for each
test socket’s UUT result in the batch report. Using subsequences, the
BatchReport callback calls the ModifyBatchReportEntry callback for
each test socket. The ModifyBatchReportEntry callback receives the
following parameters: the test socket data, the tentative report entry
text, and the report options. The ModifyBatchReportEntry callback in
the process model file is empty.

• ModifyBatchReportFooter—The BatchReport callback calls this
callback so that the client sequence file can modify the batch report
footer. The ModifyBatchReportFooter callback receives the following
parameters: the tentative report footer text and the report options. The
ModifyBatchReportFooter callback in the process model file is empty.

Test UUTs
The Test UUTs entry point is the sequence that the controlling execution
runs. Table A-8 lists the most significant steps of the Test UUTs entry point
in the order that they are performed.

Appendix A Process Model Architecture

© National Instruments Corporation A-33 TestStand Reference Manual

Table A-8. Order of Actions the Batch Process Model Test UUTs Entry Point Performs

Action
Number Description Remarks

1 Call Get Model Options Utility
subsequence.

Reads model options from disk. Calls the
ModelOptions callback to give the client
sequence file an opportunity to modify the
model options.

2 Call PreBatchLoop callback. Callback in the process model file is empty.

3 Call Get Station Info Utility
subsequence.

Identifies the test station name and the
current user.

4 Call Get Report Options Utility
subsequence.

Reads report options from disk. Calls the
ReportOptions callback to give the client
sequence file an opportunity to modify the
report options.

5 Call Get Database Options Utility
subsequence.

Reads database options from disk. Calls the
DatabaseOptions model callback to give the
client sequence file an opportunity to
modify the database options.

6 Create and initialize test socket
executions.

For more information about the
Test UUTs – Test Socket Entry Point
sequence and what test executions do,
refer to Table A-9.

7 Call Run Batch Info Dialog. Calls the Run Batch Info Dialog sequence
in a new thread and waits for it to initialize
the dialog box code.

8 Wait for test sockets to get to the
Initialize synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

9 Call Add TestSocket Threads to Batch. Adds test socket execution threads to the
Batch Synchronization object. This allows
the user’s test sequence to use batch
synchronization.

10 Allow test socket executions that are
waiting at the Initialize
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence.

11 Increment the Batch index. —

Appendix A Process Model Architecture

TestStand Reference Manual A-34 ni.com

12 Wait for test sockets to get to the
GetUUTSerialNumber
synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

13 Call PreBatch callback. Obtains the batch and UUT serial numbers
from the operator.

14 If no more UUTs, set test socket data
to tell test sockets to stop running their
UUT loops.

Sets the ContinueTesting test socket data
variable to False for all of the test sockets
and marks them all as enabled so that they
will be added to the batch and exit normally.

15 Remove disabled test socket threads
from the batch and add enabled test
socket threads.

Disabled test sockets need to be removed
from the batch so that they don’t block the
threads that are running.

16 Allow test socket executions that are
waiting at the GetUUTSerialNumber
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence.

17 If no more UUTs, go to
Action Number 34.

—

18 Wait for test sockets to get to the
ReadyToRun synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

19 Determine the report file pathname for
Batch and UUT report files.

Determines the report file pathname to use
if the report options are configured so that
all UUT results for the model are written to
the same file or are written to the same file
as the batch reports.

20 Allow test socket executions that are
waiting at the ReadyToRun
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence.

21 Wait for test sockets to get to the
ShowStatus synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

Table A-8. Order of Actions the Batch Process Model Test UUTs Entry Point Performs (Continued)

Action
Number Description Remarks

Appendix A Process Model Architecture

© National Instruments Corporation A-35 TestStand Reference Manual

22 Call Add TestSocket Threads to Batch. The test socket executions remove
themselves from the batch after executing
MainSequence in order to cleanup the state
of the batch in case the sequence was
terminated or the user did not match enters
and exits properly. This is where the test
socket execution threads are added to the
batch again.

23 Call PostBatch callback. Displays a pass, fail, error, or terminate
banner for all of the test sockets in the batch.

24 Allow test socket executions that are
waiting at the ShowStatus
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence.

25 Wait for test sockets to get to the
WriteReport synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

26 Call BatchReport callback. Generates a batch report for the last run of
the batch of UUTs.

27 Write the batch report to disk. Appends to an existing file or creates a new
file.

28 Allow test socket executions that are
waiting at the WriteReport
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence passing True for the
ReleaseThreadsSequentially parameter so
that only one UUT report is written at a time
in the test socket index order.

29 Wait for test sockets to get to the
UUTDone synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

30 Tell the Status dialog box that report
generation is complete.

Enables the View Report button so that you
can view the reports from the dialog box.

31 Wait for Status dialog box. If the PostBatch callback Status dialog box
displays the PostBatch callback, then the
sequence waits for you to dismiss the dialog
box, if you have not already done so.

Table A-8. Order of Actions the Batch Process Model Test UUTs Entry Point Performs (Continued)

Action
Number Description Remarks

Appendix A Process Model Architecture

TestStand Reference Manual A-36 ni.com

Test UUTs – Test Socket Entry Point
The Test UUTs – Test Socket entry point is the sequence that the test socket
executions run. The controlling execution creates the test socket executions
in its Test UUTs entry point sequence. Table A-9 lists the most significant
steps of the Test UUTs – Test Socket entry point in the order that they are
performed.

32 Allow test socket executions that are
waiting at the UUTDone
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence.

33 Loop back to Action Number 11. —

34 Wait for test socket executions to
complete.

—

35 Call PostBatchLoop callback. Callback in the process model file is empty.

Table A-9. Order of Actions the Batch Process Model Test UUTs – Test Socket Entry Point Performs

Action
Number Description Remarks

1 Synchronize with the controlling
execution for the Initialize
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket’s notification.

2 Call PreUUTLoop callback. Callback in the process model file is empty.

3 Increment the UUT index. —

4 Clear information from previous loop
iteration.

Discards the previous results and clears the
report and failure stack.

5 Synchronize with the controlling
execution for the
GetUUTSerialNumber
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket’s notification.

6 Call PreUUT callback. Callback in the process model file is empty.

7 If no more UUTs, go to
Action Number 20.

—

Table A-8. Order of Actions the Batch Process Model Test UUTs Entry Point Performs (Continued)

Action
Number Description Remarks

Appendix A Process Model Architecture

© National Instruments Corporation A-37 TestStand Reference Manual

8 Synchronize with the controlling
execution for the ReadyToRun
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket’s notification.

9 Determine the report file pathname. —

10 Call MainSequence callback. MainSequence callback in the client
sequence file performs the tests on the UUT.

11 Remove the test socket thread from
batch synchronization.

Cleans the state of the batch in case the
MainSequence was terminated or you did
not match enters and exits properly. The
controlling execution adds the thread to
batch synchronization before continuing
past the next synchronization point.
Disabled test sockets do not get added to the
batch.

12 Synchronize with the controlling
execution for the ShowStatus
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket notification.

13 Call PostUUT callback. Callback in the process model file is empty.

14 Call TestReport callback. Generates a test report for the UUT.

15 Call LogToDatabase callback. Logs test results to a database for the UUT.

16 Synchronize with controlling
execution for the WriteReport
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket notification.

17 Write the UUT report to disk. Appends to an existing file or creates a
new file.

18 Synchronize with controlling
execution for the UUTDone
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket notification.

19 Loop back to Action Number 3. —

20 Call PostUUTLoop callback. Callback in the process model file is empty.

Table A-9. Order of Actions the Batch Process Model Test UUTs – Test Socket Entry Point Performs (Continued)

Action
Number Description Remarks

Appendix A Process Model Architecture

TestStand Reference Manual A-38 ni.com

Single Pass
The Single Pass entry point is the sequence that the controlling execution
runs. Table A-10 lists the most significant steps of the Single Pass entry
point in the order that they are performed.

Table A-10. Order of Actions the Batch Process Model Single Pass Entry Point Performs

Action
Number Description Remarks

1 Call Get Model Options Utility
subsequence.

Reads model options from disk. Calls the
ModelOptions callback to give the client
sequence file an opportunity to modify the
model options.

2 Call Get Station Info Utility
subsequence.

Identifies the test station name and the
current user.

3 Call Get Report Options Utility
subsequence.

Reads report options from disk. Calls the
ReportOptions callback to give the client
sequence file an opportunity to modify the
report options.

4 Call Get Database Options Utility
subsequence.

Reads database options from disk. Calls the
DatabaseOptions callback to give the client
sequence file an opportunity to modify the
database options.

5 Create and initialize test socket
executions.

For more information about the
Single Pass – Test Socket Entry Point
sequence and what test executions do,
refer to Table A-11.

6 Wait for test sockets to get to the
ReadyToRun synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

7 Call Add TestSocket Threads to Batch. Adds test socket execution threads to the
batch Synchronization object. This allows
your test sequence to use batch
synchronization.

8 Determine the report file pathname for
batch and UUT report files.

Determines the report file pathname to use
if the report options are configured so that
all UUT results for the model are written to
the same file or if they are written to the
same file as the batch reports.

Appendix A Process Model Architecture

© National Instruments Corporation A-39 TestStand Reference Manual

9 Allow test socket executions that are
waiting at the ReadyToRun
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence.

10 Wait for test sockets to get to the
PostMainSequence synchronization
point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

11 Call Add TestSocket Threads to Batch. The test socket executions remove
themselves from the batch after executing
MainSequence, in order to clean up the state
of the batch in case the sequence was
terminated or you did not match enters and
exits properly. This is where the test socket
execution threads are added to the batch
again.

12 Allow test socket executions that are
waiting at the PostMainSequence
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence.

13 Wait for test sockets to get to the
WriteReport synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

14 Call BatchReport callback. Generates a batch report for the last batch of
UUTs run.

15 Write the batch report to disk. Appends to an existing file or creates a
new file.

16 Allow test socket executions that are
waiting at the WriteReport
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence passing True for the
ReleaseThreadsSequentially parameter so
that only one UUT report is written at a time
in test socket index order.

17 Wait for test sockets to get to the
UUTDone synchronization point.

Calls the ProcessTestSocketRequests
sequence to wait for and monitor test socket
executions.

Table A-10. Order of Actions the Batch Process Model Single Pass Entry Point Performs (Continued)

Action
Number Description Remarks

Appendix A Process Model Architecture

TestStand Reference Manual A-40 ni.com

Single Pass – Test Socket Entry Point
The Single Pass –T est Socket entry point is the sequence that the test
socket executions run. The controlling execution creates the test socket
executions in its Single Pass entry point sequence. Table A-11 lists the most
significant steps of the Single Pass – Test Socket entry point in the order
that they are performed.

18 Allow test socket executions that are
waiting at the UUTDone
synchronization point to continue.

Calls the Notify TestSocket Threads
sequence.

19 Wait for test socket executions to
complete.

—

Table A-11. Order of Actions the Batch Process Model Single Pass – Test Socket Entry Point Performs

Action
Number Description Remarks

1 Sync with controlling execution for the
ReadyToRun synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket’s notification.

2 Determine the report file pathname. —

3 Call MainSequence callback. MainSequence callback in the client
sequence file performs the tests on the UUT.

4 Remove the test socket thread from
batch synchronization.

Allows other test socket threads to do batch
synchronization without counting this
thread anymore. The controlling execution
adds the thread to batch synchronization
before the thread runs the Main sequence
again. Disabled test sockets do not get
added to the batch.

5 Synchronize with controlling
execution for the PostMainSequence
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket’s notification.

6 Call TestReport callback. Generates a test report for the UUT.

Table A-10. Order of Actions the Batch Process Model Single Pass Entry Point Performs (Continued)

Action
Number Description Remarks

Appendix A Process Model Architecture

© National Instruments Corporation A-41 TestStand Reference Manual

Support Files for the TestStand Process Models
Many sequences in the TestStand process model files call functions in
DLLs and subsequences in other sequence files. TestStand installs these
supporting files and the DLL source files in the same directory that it
installs the process model sequence files.

Table A-12 lists the supporting files that TestStand installs for the
TestStand process models in the <TestStand>\Components\NI\
Models\TestStandModels directory.

7 Call LogToDatabase callback. Logs test results to a database for the UUT.

8 Synchronize with controlling
execution for the WriteReport
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket notification.

9 Write the UUT report to disk. Appends to an existing file or creates a
new file.

10 Synchronize with controlling
execution for the UUTDone
synchronization point.

Calls SendControllerRequest and blocks
until the controlling execution sets the test
socket’s notification.

Table A-12. Installed Support Files for the Process Model Files

File Name Description

SequentialModel.seq,
ParallelModel.seq, and
BatchModel.seq

Entry point and Model callback sequences for the TestStand
process models.

reportgen_html.seq Subsequences that add the header, result entries, and footer for a
UUT into an HTML test report.

reportgen_txt.seq Subsequences that add the header, result entries, and footer for a
UUT into an ASCII-text test report.

reportgen_xml.seq Subsequences that add the deader, result entries, and footer for a
UUT into an XML test report.

Table A-11. Order of Actions the Batch Process Model Single Pass – Test Socket Entry Point Performs (Continued)

Action
Number Description Remarks

Appendix A Process Model Architecture

TestStand Reference Manual A-42 ni.com

modelsupport2.dll DLL containing C functions that the process model sequences
call. Includes functions that launch the Report Options and Model
Options dialog boxes, read and write those options from disk,
determine the report file pathname, obtain the UUT serial number
from the operator, and display status banners.

modelsupport2.prj LabWindows/CVI project that builds modelsupport2.dll.

modelsupport2.fp LabWindows/CVI function panels for the functions in
modelsupport2.dll.

modelsupport2.h C header file that contains declarations for the functions in
modelsupport2.dll.

modelsupport2.lib Import library in Visual C/C++ format for
modelsupport2.dll.

modelpanels.uir LabWindows/CVI user interface resource file containing panels
that the functions in modelsupport2.dll use.

ModelSupport.seq Subsequences that all process models use for report generation.

database.seq Subsequences that all process models use for database logging.

modelpanels.h C header file containing declarations for the panels in
modelpanels.uir.

main.c C source for utility functions.

banners.c C source for functions that display status banners.

report.c C source for functions that launch the Report Options dialog box,
read and write the report options from disk, and determine the
report file pathname.

uutdlg.c C source for the function that obtains the UUT serial number
from the operator.

c_report.c C source for generating HTML, XML, and ASCII-text reports for
the DLL option in the Report Options dialog box.

Table A-12. Installed Support Files for the Process Model Files (Continued)

File Name Description

Appendix A Process Model Architecture

© National Instruments Corporation A-43 TestStand Reference Manual

You can view the contents of the reportgen_html.seq,
reportgen_txt.seq, and reportgen_xml.seq sequence files in the
sequence editor. These files are model sequence files and contain an empty
ModifyReportEntry callback. Each file has a PutOneResultInReport
sequence that calls ModifyReportEntry. The client sequence file can
override the ModifyReportEntry callback. TestStand requires that all
sequence files that contain direct calls to Model callbacks must also contain
a definition of the callback sequence and must be model files.

The TestStand process model sequence files also contain an empty
ModifyReportEntry callback, even though no sequences in those files call
ModifyReportEntry directly. They contain a ModifyReportEntry callback
so that ModifyReportEntry appears in the Sequence File Callbacks dialog
box for the client sequence file.

Report Generation Functions and Sequences
When you customize report generation for your test station, create your
own process model, or modify the default TestStand process model files,
always make a copy of the default process model and then make your
modifications to that copy. This practice ensures that newer installations of
TestStand will not overwrite your customizations. Place the copy in the
<TestStand>\Components\User directory.

Tables A-13 and A-14 list the process model sequences and C functions
that generate the report and the locations of the files that contain them.
Table A-13 lists the default process model sequences in the
<TestStand>\Components\NI\Models\TestStandModels directory
that generate the report header and footer.

modeloptions.c C source for the functions that launch the Model Options dialog
box and read and write the model options from disk.

batchUUTdlg.c and
parallelUUTdlg.c

C source for the functions that launch the UUT identification
dialog boxes for the Batch and Parallel process models. The files
are part of modelsupport2.dll but the default process model,
SequentialModel.seq, does not call them.

Table A-12. Installed Support Files for the Process Model Files (Continued)

File Name Description

Appendix A Process Model Architecture

TestStand Reference Manual A-44 ni.com

Table A-14 lists the default process model sequences and C functions in
<TestStand>\Components\NI\Models\TestStandModels that
generate the report body for each step result.

You can also alter the report generation for each client sequence file that
you run. To alter report generation, you override the report generation
Model callbacks in the client sequence file. Table A-15 lists the report
generation Model callbacks.

Table A-13. Sequences that Generate the Report Header and Footer

Report Format

Report Header or Footer

Header Footer

HTML AddReportHeader sequence in
reportgen_html.seq

AddReportFooter sequence in
reportgen_html.seq

Text AddReportHeader sequence in
reportgen_txt.seq

AddReportFooter sequence in
reportgen_txt.seq

XML AddReportHeader sequence in
reportgen_xml.seq

AddReportHeader sequence in
reportgen_xml.seq

Table A-14. Sequences or C Functions that Generate the Report Body

Report Format

Report Body Generator Selected in the Report Options Dialog Box

Sequence DLL

HTML PutOneResultInReport sequence in
reportgen_html.seq

PutOneResultInReport_Html
function in c_report.c in the
modelsupport2.prj
LabWindows/CVI project.

Text PutOneResultInReport sequence in
reportgen_txt.seq

PutOneResultInReport_Txt function
in c_report.c in the
modelsupport2.prj
LabWindows/CVI project.

XML AddReportBody sequence in
reportgen_xml.seq

AddSequenceCallResult_XML
function in the
modelsupport2.prj
LabWindows/CVI project.

Appendix A Process Model Architecture

© National Instruments Corporation A-45 TestStand Reference Manual

In addition, each step in the sequence can add text to its corresponding
result in the report. To make these additions, the step stores the text to add
to the report in its Step.Result.ReportText property.

Table A-15. Report Generation Model Callbacks

Section of the Report to Alter Model Callback Sequence to Override

Report Header ModifyReportHeader

Report Footer ModifyReportFooter

Each Step Result ModifyReportEntry
(TestStand does not call this callback if you select DLL in the
Select a Report Generator for Producing the Report Body section
of the Contents tab on the Report Options dialog box.)

Entire Report TestReport

© National Instruments Corporation B-1 TestStand Reference Manual

B
Synchronization Step Types

This appendix describes step types that you use to synchronize, pass data
between, and perform other operations in multiple threads of an execution
or multiple running executions in the same process. Configure these steps
using the Configuration dialog boxes. Do not write code modules for these
steps.

For more information about the Configuration dialog boxes for
Synchronization step types, refer to the TestStand Help. You can view
examples for Synchronization step types in the <TestStand>\
Examples\Synchronization directory.

Synchronization Objects
Most Synchronization step types create and control a particular type of
Synchronization object. Following is a list of the types of Synchronization
objects:

• Lock—Use a Lock object to guarantee exclusive access to a resource.
For example, if several execution threads write to a device that does not
have a thread-safe driver, you can use a Lock object to make sure that
only one thread accesses the device at a time.

• Semaphore—Use a Semaphore object to limit access to a resource to
a specific number of threads. A Semaphore object is similar to a Lock
object, except that it restricts access to the number of threads that you
specify rather than to just one thread. For example, you can use a
Semaphore object to restrict access to a communications channel to a
limited number of threads so that each thread has sufficient bandwidth.
Typically, you limit access to a shared resource to only one thread at a
time. Therefore, a typical application uses Lock objects rather than
Semaphore objects.

• Rendezvous—Use a Rendezvous object to make a specific number of
threads wait for each other before they proceed past a location you
specify. For example, if different threads configure different aspects of
a testing environment, you can use a Rendezvous object to ensure that
none of the threads proceed beyond the configuration process until all
threads have completed their configuration tasks.

Appendix B Synchronization Step Types

TestStand Reference Manual B-2 ni.com

• Queue—Use a Queue object to pass data from the thread that produces
it to a thread that processes it. For example, a thread that performs tests
asynchronously with respect to the Main sequence might use a queue
to receive commands from the Main sequence.

• Notification—Use a Notification object to notify one or more threads
when a particular event or condition occurs. For example, if you
display a dialog box in a separate thread, you can use a Notification
object to signal another thread when the user dismisses the dialog box.

• Batch—Use a Batch object to define and synchronize a group of
threads. This is useful when you want to test a group of similar UUTs
simultaneously. You can configure a synchronized section so that only
one UUT enters the section at a time, no UUTs enter the section until
all are ready, and no UUTs proceed beyond the section until all are
done. This is useful when, for a particular test, you only have one test
resource which you must apply to each UUT in turn. You can also
configure a synchronized section to guarantee that only one thread
executes the steps in the section. This is useful for an action that
applies to the entire batch, such as raising the temperature in an
environmental chamber. Having a separate thread for each UUT allows
you to exploit parallelism while enforcing serialization when
necessary. It also allows you to use preconditions and other branching
options so that each UUT has its own flow of execution.

Normally, you are not required to create a Batch object. The TestStand
Batch process model does this for you. The model uses Batch
Specification steps to group test socket execution threads together so
that you can use Batch Synchronization steps to synchronize them in
your sequence file. If you want to create a synchronized section around
a single step, use the Synchronization tab on the Step Properties dialog
box instead of using explicit Batch Synchronization steps.

For more information about the Batch process model, refer to the
Batch Process Model section of Appendix A, Process Model
Architecture. For more information about Batch Synchronization,
refer to the Batch Synchronization section of this appendix. For more
information about the Synchronization tab on the Step Properties
dialog box, refer to the TestStand Help.

Appendix B Synchronization Step Types

© National Instruments Corporation B-3 TestStand Reference Manual

Common Attributes of Synchronization Objects
You can use the Configuration dialog box for each step type to configure
the following attributes for all Synchronization objects:

Name
When you create a Synchronization object, you can specify a unique name
with a literal string or an expression that evaluates to a string. If an object
with the same name and type already exists, you create a reference to the
existing object. Otherwise, you create a reference to a new Synchronization
object. By creating a reference to an existing object, you can access the
same Synchronization object from multiple threads or executions.

If you specify an empty string as the name for a Synchronization object,
TestStand creates an unnamed Synchronization object that you can only
access through an object reference variable. To associate an unnamed
Synchronization object with an object reference variable, select Use
Object Reference as the object reference lifetime in the <StepType> Step
Configuration dialog box for each step type.

By default, a Synchronization object is only accessible from the operating
system process in which you create it. However, you can make a
Synchronization object accessible from other processes, such as multiple
instances of an operator interface, by using an asterisk (*) as the first
character in the name. In addition, you can create a Synchronization object
on a specific machine by beginning the name with the machine name, such
as "\\\\machinename\\syncobjectname". You can then use this
name to access the Synchronization object from any machine on your
network.

To access Synchronization objects on other machines, you must configure
DCOM for the TSAutoMgr.exe server, which is located in the
<TestStand>\Bin directory. Refer to the Setting up TestStand as a Server
for Remote Execution section of Chapter 5, Module Adapters, for
information about configuring DCOM and setting up TestStand as a server
for remote execution. Follow the instructions given for the REngine.exe
server, but apply them to the TSAutoMgr.exe server.

Note When you specify an object on a remote machine using a string constant in a dialog
box expression control, be sure to escape the backslashes and surround the name in quotes.
For example, use "\\\\machinename\\syncobjname" instead of
\\machinename\\syncobjname.

Appendix B Synchronization Step Types

TestStand Reference Manual B-4 ni.com

All named TestStand Synchronization objects share the same name space.
Therefore, you cannot have Synchronization objects with the same name.
Synchronization object names are not case-sensitive.

Lifetime
When you create a Synchronization object, you must specify a lifetime for
the reference you create. The object exists for at least as long as the
reference exists, but can exist longer if another reference to it has a different
lifetime.

The object reference lifetime choices are Same as Sequence, Same as
Thread, Same as Execution, and Use Object Reference. If you refer to your
object by name only, then you typically set its reference lifetime to Same as
Sequence, Same as Thread, or Same as Execution. This guarantees that the
object lives as long as the sequence, thread, or execution in which you
create the reference. If you want to explicitly control the lifetime of the
object reference or if you wish to refer to the object using an object
reference variable, select Use Object Reference from the <Step> Reference
Lifetime ring control in the <Step Type> Step Configuration dialog box.
You can use the object reference in place of its name when performing
operations on the object.

You can also use the reference from other threads without performing a
Create operation in each thread. An object reference releases its object
when you set the variable equal to Nothing, when you reuse the variable
to store a different reference, or when the variable goes out of scope. When
the last object reference to a Synchronization object releases, TestStand
disposes of the object.

Some Synchronization objects have an operation, such as Lock or Acquire,
for which you can also specify a lifetime. In this case, the lifetime
determines the duration of the operation.

Timeout
Most Synchronization objects can perform one or more operations that
timeout if they do not complete within the number of seconds you specify.
You can specify that TestStand treats a timeout as an error condition or you
can explicitly check for the occurrence of a timeout by checking the value
of the Step.Result.TimeoutOccurred property.

Appendix B Synchronization Step Types

© National Instruments Corporation B-5 TestStand Reference Manual

Synchronization Step Types
Each type of Synchronization object has a step type to create and control
the object. The Batch Synchronization object has two step types, Batch
Specification and Batch Synchronization. For all other Synchronization
objects, the name of the step type is the same as the name of the
Synchronization object type it controls. The following additional
Synchronization step types exist:

• Wait—Use the Wait step to wait for an execution or thread to complete
or for a time interval to elapse.

• Thread Priority—Use the Thread Priority step to adjust the operating
system priority of a TestStand thread.

To use any Synchronization step type, insert a step of that type and select
Configure <Step Name> from the context menu to launch the <Step
Type> Step Configuration dialog box. Use this dialog box to select an
operation for the step to perform. You can then specify settings for the
operation you select. Some operations store output values to variables you
specify. If the control for an output value is labeled as an optional output,
you can leave the control empty.

The following sections describe the functionality and custom properties of
each Synchronization step type.

Lock
Use a Lock step to ensure that only one thread can access a particular
resource or data item at a time. For example, if you examine and update the
value of a global variable from multiple threads or executions, you can use
a lock to ensure that only one thread examines and updates the variable at
a time. If multiple threads are waiting to lock a lock, they do so in first in
first out (FIFO) order as the lock becomes available.

A thread can lock the same lock an unlimited number of times without
unlocking it. To release the lock, the thread must balance each Lock
operation with an Unlock operation.

Locks in TestStand have deadlock detection. If all of the threads that are
using a set of locks reside on the same machine, and all of the locks in that
set reside on that machine as well, TestStand will detect and report a
run-time error if deadlock occurs as a result of those locks and threads. To
avoid deadlock, you must always lock a set of locks in the same order in
every thread, or lock all of the locks required by a thread in one Lock
operation by specifying an array of lock names or references.

Appendix B Synchronization Step Types

TestStand Reference Manual B-6 ni.com

Note You can also create a lock around a single step using the Synchronization tab on the
Step Properties dialog box.

Note TestStand variables and properties are thread safe.

Step Properties
In addition to the common custom properties, the Lock step type defines the
following step properties:

• Step.Result.TimeoutOccurred—Set to True if the Lock operation
times out. This property only exists if the step is configured for the
Lock operation.

• Step.NameOrRefExpr—Contains the Lock Name expression for the
Create operation and the Lock Name or Reference expression for all
other Lock operations. In the case of the Lock operation, this
expression can also specify an array of names or references.

• Step.LifetimeRefExpr—Contains the object reference expression for
the Lock Reference Lifetime or Lock Operation Lifetime when you set
either lifetime to Use Object Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Lock operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Lock operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Lock operation.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Lock Exists expression for the Get
Status operation.

• Step.NumThreadsWaitingExpr—Contains the Number of Threads
Waiting to Lock the Lock expression for the Get Status operation.

• Step.Operation—Contains a value that specifies the operation the
step is configured to perform. The valid values are 0 = Create,
1 = Lock, 2 = Early Unlock, 3 = Get Status.

• Step.Lifetime—Contains a value that specifies the lifetime setting
to use for the Create operation. The valid values are 0 = Same as
Sequence, 1 = Same as Thread, 2 = Use Object Reference, 3 = Same
as Execution.

Appendix B Synchronization Step Types

© National Instruments Corporation B-7 TestStand Reference Manual

• Step.LockLifetime—Contains a value that specifies the lifetime
setting to use for the Lock operation. The valid values are 0 = Same
as Sequence, 1 = Same as Thread, 2 = Use Object Reference.

• Step.CreateIfDoesNotExist—Contains the Create If Does Not Exist
setting for the Lock operation.

Rendezvous
Use a Rendezvous step to cause threads to wait for each other before
proceeding past a specified location. Each thread blocks as it performs the
Rendezvous operation. When the number of blocked threads reaches the
total that you specified when you created the rendezvous, the rendezvous
unblocks all its waiting threads and they resume execution.

Step Properties
In addition to the common custom properties, the Rendezvous step type
defines the following step properties:

• Step.Result.TimeoutOccurred—Set to True if the Rendezvous
operation times out. This property only exists if the step is configured
for the Rendezvous operation.

• Step.NameOrRefExpr—Contains the Rendezvous Name expression
for the Create operation and the Rendezvous Name or Reference
expression for other Rendezvous operations.

• Step.LifetimeRefExpr—Contains the object reference expression for
the Rendezvous Reference lifetime when you set the lifetime to Use
Object Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Rendezvous operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Rendezvous operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Rendezvous operation.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Rendezvous Exists expression for the
Get Status operation.

• Step.RendezvousCountExpr—Contains the Number of Threads Per
Rendezvous expression for the Create operation.

• Step.NumThreadsWaitingExpr—Contains the Number of Threads
Waiting for Rendezvous expression for the Get Status operation.

Appendix B Synchronization Step Types

TestStand Reference Manual B-8 ni.com

• Step.Operation—Contains a value that specifies the operation the
step performs. The valid values are 0 = Create, 1 = Rendezvous,
2 = Get Status.

• Step.Lifetime—Contains a value that specifies the lifetime for the
Create operation. The valid values are 0 = Same as Sequence,
1 = Same as Thread, 2 = Use Object Reference, 3 = Same as
Execution.

• Step.RendezvousCountOutExpr—Contains the Number of Threads
Per Rendezvous expression for the Get Status operation.

Queue
Use Queue steps to synchronize the production and consumption of data
among your threads. A queue has two primary operations—enqueue and
dequeue. Enqueue places a data item on the queue and dequeue removes an
item from the queue. The Enqueue operation blocks when the queue is full,
while the Dequeue operation blocks when the queue is empty. If multiple
threads block on the same Queue operation, the threads unblock in first in
first out (FIFO) order.

Step Properties
In addition to the common custom properties, the Queue step type defines
the following step properties:

• Step.Result.TimeoutOccurred—Set to True if an Enqueue or
Dequeue operation times out. This property only exists if the step is
configured for the Enqueue or Dequeue operation.

• Step.NameOrRefExpr—Contains the Queue Name expression for
the Create operation and the Queue Name or Reference expression for
all other operations. In the case of the Dequeue operation, this
expression can specify an array of names or references.

• Step.LifetimeRefExpr—Contains the object reference expression for
the queue lifetime when you set the lifetime to Use Object Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Enqueue or Dequeue operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Enqueue or Dequeue operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Enqueue or Dequeue operation.

Appendix B Synchronization Step Types

© National Instruments Corporation B-9 TestStand Reference Manual

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Queue Exists expression for the Get
Status operation.

• Step.MaxNumElementsExpr—Contains the expression that
specifies the maximum number of elements of the queue for the Create
operation.

• Step.MaxNumElementsOutExpr—Contains the expression that
specifies where to store the maximum number of elements of the queue
for the Get Status operation.

• Step.NumThreadsWaitingEnqueueExpr—Contains the expression
that specifies where to store the number of threads that are waiting to
enqueue for the Get Status operation.

• Step.NumThreadsWaitingDequeueExpr—Contains the expression
that specifies where to store the number of threads that are waiting to
dequeue for the Get Status operation.

• Step.Operation—Contains a value that specifies the operation the
step performs. The valid values are 0 = Create, 1 = Enqueue,
2 = Dequeue, 3 = Flush, 4 = Get Status.

• Step.Lifetime—Contains a value that specifies the lifetime setting for
the Create operation. The valid values are 0 = Same as Sequence,
1 = Same as Thread, 2 = Use Object Reference, 3 = Same as
Execution.

• Step.NumElementsExpr—Contains the expression that specifies
where to store the current number of elements in the queue for the
Get Status operation.

• Step.DataExpr—Contains the New Element to Enqueue expression
when you configure the step for the Enqueue operation, the Location
to Store Element expression when you configure the step for the
Dequeue operation, and the Location to Store Array of Queue
Elements expression when you configure the step for the Flush or
Get Status operation.

• Step.ByRef—Contains the Boolean value that specifies whether the
step stores a queue element by object reference instead of by value for
the Enqueue operation.

• Step.EnqueueLocation—Contains a value that specifies the location
to store the queue element for the Enqueue operation. The valid values
are 0 = Front of Queue, 1 = Back of Queue.

• Step.DequeueLocation—Contains a value that specifies the location
to remove the queue element from for the Dequeue operation. The
valid values are 0 = Front of Queue, 1 = Back of Queue.

Appendix B Synchronization Step Types

TestStand Reference Manual B-10 ni.com

• Step.FullQueueOption—Contains a value that specifies the options
for the If the Queue is Full setting of the Enqueue operation. The valid
values are 0 = Wait, 1 = Discard Front Element, 2 = Discard Back
Element, 3 = Do Not Enqueue.

• Step.RemoveElement—Contains a Boolean value that specifies
whether the step removes the element from the queue when it performs
the Dequeue operation.

• Step.WhichQueueExpr—Contains the expression that specifies
where to store the array offset of the queue on which the Dequeue
operation occurs.

Notification
Use Notification steps to notify one or more threads when a particular event
or condition has been met. You can also pass data to the threads you notify.

Step Properties
In addition to the common custom properties, the Notification step type
defines the following step properties:

• Step.Result.TimeoutOccurred—Set to True if a Wait operation
times out. This property only exists if the step is configured for the
Wait operation.

• Step.NameOrRefExpr—Contains the Notification Name expression
for the Create operation and the Notification Name or Reference
expression for all other operations. In the case of the Wait operation,
this expression can optionally specify an array of names or references.

• Step.LifetimeRefExpr—Contains the object reference expression for
the notification lifetime when you set the lifetime to Use Object
Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Wait operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Wait operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Wait operation.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Notification Exists expression for the
Get Status operation.

Appendix B Synchronization Step Types

© National Instruments Corporation B-11 TestStand Reference Manual

• Step.NumThreadsWaitingExpr—Contains the expression that
specifies where to store the number of threads that are waiting on the
notification for the Get Status operation.

• Step.Operation—Contains a value that specifies the operation the
step is set to perform. The valid values are 0 = Create, 1 = Set,
2 = Clear, 3 = Pulse, 4 = Wait, 5 = Get Status.

• Step.Lifetime—Contains a value that specifies the lifetime setting for
the Create operation. The valid values are 0 = Same as Sequence,
1 = Same as Thread, 2 = Use Object Reference, 3 = Same as
Execution.

• Step.DataExpr—Contains the Data Value expression for the Set or
Pulse operation, or the Location to Store Data expression for the Wait
or Get Status operation.

• Step.ByRef—Contains the Boolean value that specifies whether to
store the data by object reference instead of by value for a Set or Pulse
operation.

• Step.WhichNotificationExpr—Contains the expression that
specifies where to store the array offset of the notification to which the
Wait operation responds.

• Step.IsSetExpr—Contains the expression that specifies where to store
the Boolean value that indicates whether the notification is in a Set
state. The Get Status operation uses this expression.

• Step.IsAutoClearExpr—Contains the expression that specifies
where to store the Boolean value that indicates whether the notification
is configured to AutoClear. The Get Status operation uses this
expression.

• Step.AutoClear—Contains the AutoClear setting for the Set
operation.

• Step.PulseNotifyOpt—Contains the setting for the Pulse operation
that indicates the threads to which a pulse notification is sent. The valid
values are 0 = Notify First Waiting Thread, 1 = Notify All Waiting
Threads.

Wait
Use Wait steps to wait for an execution or thread to complete or for a time
interval to elapse.

Appendix B Synchronization Step Types

TestStand Reference Manual B-12 ni.com

Retrieving the Results from Executions and Threads
When the thread or execution completes, the Wait step copies the result
status and error information for the thread or execution to its own status and
error properties. Therefore, if a Wait step waits on a sequence that fails, the
status of the Wait step is Failed.

The result list entry for a Wait step contains a
TS.AsyncSequenceCall.ResultList property which is the result list for
the thread or execution. You can also access the same result list in the
TS.SequenceCall.ResultList property in the result for the Sequence
Call step that launches the thread or execution.

Step Properties
In addition to the common custom properties, the Wait step type defines the
following step properties:

• Step.Result.TimeoutOccurred—Set to True if the Wait for Thread
or Wait for Execution operation times out. This property only exists if
the step is configured for one of these operations.

• Step.TimeoutEnabled—Contains the timeout enabled setting for the
Wait for Thread or the Wait for Execution operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Wait for Thread or the Wait for Execution
operation.

• Step.ThreadRefExpr—Contains the Thread Reference expression
for the Wait for Thread operation when the Step.SpecifyBySeqCall
property is set to False.

• Step.SeqCallName—Contains the name of the Sequence Call step
that creates the thread or execution the step waits for when the
Step.SpecifyBySeqCall property is set to True.

• Step.SeqCallStepGroupIdx—Contains the step group of the
Sequence Call step that creates the thread or execution that the step
waits for when the Step.SpecifyBySeqCall property is set to True.
The valid values are 0 = Setup, 1 = Main, 2 = Cleanup.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Wait for Thread or the Wait for Execution operation.

• Step.WaitForTarget—Contains a value that specifies the type of Wait
operation the step performs. The valid values are 0 = Time Interval,
1 = Time Multiple, 2 = Thread, 3 = Execution.

• Step.TimeExpr—Contains the time expression for the Time Interval
or Time Multiple operation of the step.

Appendix B Synchronization Step Types

© National Instruments Corporation B-13 TestStand Reference Manual

• Step.ExecutionRefExpr—Contains the expression that evaluates to a
reference to the execution on which the Wait for Execution operation
waits.

• Step.SpecifyBySeqCall—Contains the Specify By Sequence Call
setting for the Wait for Thread or the Wait for Execution operation.

TestStand also adds the following properties to the results for Wait steps
that are configured to wait for a thread or execution.

Note These properties are not subproperties of the Result property for the Wait step type.

• AsyncMode—Set to True if the Wait step is waiting on a thread. It is
set to False if the Wait step is waiting on an execution.

• AsyncId—Contains the value of the Id property of the thread or
execution that the step is waiting for.

Batch Synchronization
Use Batch Synchronization steps to define sections of a sequence in which
to synchronize multiple threads that belong to one batch. Typically, you use
these steps in a sequence that you execute using the Batch process model.

More specifically, you place Batch Synchronization steps around one or
more test steps to create a synchronized section.

Synchronized Sections
Use Batch Synchronization steps to define synchronized sections by
placing a step at the beginning and end of a section of steps in a sequence
and specifying an Enter operation for the beginning step and an Exit
operation for the ending step. While you must place the Enter and Exit steps
in the same sequence, you do not have to place them in the same step group.
There are three types of synchronized sections—Serial, Parallel, and
One Thread Only. All synchronized sections share the following behaviors:

• Each thread in a batch that enters a synchronized section blocks at the
Enter step until all other threads in the batch arrive at their respective
instances of the Enter step.

• Each thread in a batch that reaches the end of the synchronized section
blocks at the Exit step until all other threads in the batch arrive at their
respective instances of the Exit step.

Appendix B Synchronization Step Types

TestStand Reference Manual B-14 ni.com

Serial Sections
Use a Serial section to ensure that each thread in the batch executes the
steps in the section sequentially and in the order that you specify when you
create the batch. When all threads in a batch arrive at their respective
instances of an Enter step for a Serial section, TestStand releases one thread
at a time in ascending order according to the order numbers you assign to
the threads when you add them to the batch using the Batch Specification
step. As each thread reaches the Exit step for the section, the next thread in
the batch proceeds from the Enter step. After all the threads in the batch
arrive at the Exit step, they exit the section together. Refer to the Semaphore
section of this appendix for more information about order numbers.

Parallel Sections
When all threads in a batch arrive at their respective instances of an Enter
step for a Parallel section, TestStand releases all the threads at once. Each
thread that arrives at the Exit step for the section blocks until all threads in
the batch reach that step.

One Thread Only Sections
Use a One Thread Only section to specify that only one thread in the batch
executes the steps in the section. Typically, you use this type of section to
perform an operation that applies to the batch as a whole, such as raising
the temperature in a test chamber. When all threads in a batch arrive at their
respective instances of an Enter step for a One Thread Only section,
TestStand releases only the thread with the lowest order number. When that
thread arrives at the Exit step for the section, all remaining threads in the
batch jump from the Enter step to the Exit step, skipping the steps within
the section. The threads in the batch then exit the section together.

Mismatched Sections
Sections become mismatched when all threads in a batch are blocked at an
Enter or an Exit operation, but they are not all blocked at the same Enter or
Exit operation. This can occur when a sequence has a conditional flow of
execution due to preconditions, post actions, or other flow control
operations.

Appendix B Synchronization Step Types

© National Instruments Corporation B-15 TestStand Reference Manual

When TestStand detects mismatched sections, it handles them as follows:

• The thread that is at the Enter or Exit step that appears earliest in the
hierarchy of sequences and subsequences proceeds as if all threads in
the batch are at the same step.

• If multiple Enter and Exit operations are equally early in the hierarchy
of sequences and subsequences, Enter operations proceed first.

Nested Sections
Nesting of sections can occur either within the same sequence or as a result
of calling a subsequence inside of a synchronized section when the
subsequence also contains a synchronized section. When you nest one
section inside another, TestStand honors the inner section if the type of the
outer section is serial or parallel. For example, if you nest one serial section
in another serial section, each thread that enters the outer section proceeds
only until the Enter step of the inner section and then waits for the other
threads to reach the same step.

TestStand ignores the inner section if the type of the outer section is
One Thread Only.

Note You can create a synchronized section around a single step using the
Synchronization tab on the Step Properties dialog box rather than by using explicit Batch
Synchronization steps.

Requirements for Using Enter and Exit Operations
TestStand generates a run-time error if your Enter and Exit operations do
not adhere to the following requirements:

• Each Exit operation must match the most nested Enter operation.

• A thread cannot reenter a section it is already within.

• You must exit a section in the same sequence that you enter it.

Step Properties
In addition to the common custom properties, the Batch Synchronization
step type defines the following step properties:

• Step.Result.TimeoutOccurred—Set to True if an Enter or Exit
operation times out.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Enter or Exit operation.

Appendix B Synchronization Step Types

TestStand Reference Manual B-16 ni.com

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Enter or Exit operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Enter or Exit operation.

• Step.Operation—Contains a value that specifies the operation the
step performs. The valid values are 0 = Enter Synchronized Section,
1 = Exit Synchronized Section.

• Step.SectionNameExpr—Contains the expression that specifies the
name of the section for the Enter or Exit operation.

• Step.SectionType—Contains a value that specifies the type of section
the Enter operation defines. The valid values are 1 = Serial,
2 = Parallel, 3 = OneThreadOnly.

Thread Priority
Use the Thread Priority step to increment or decrement the priority of a
thread so that it receives more or less CPU time than other threads.

When you use this step, you must avoid starving important threads of CPU
time by boosting the priority of another thread too high. When you alter a
thread priority, remember to save the previous priority value and restore it
once your thread no longer requires the altered priority value.

Note Setting the priority of a thread to Time Critical can cause the user interface for your
application to become unresponsive.

Step Properties
In addition to the common custom properties, the Thread Priority step type
defines the following step properties:

• Step.Operation—Contains a value that specifies the operation the
step is set to perform. The valid values are 0 = Set Thread Priority,
1 = Get Thread Priority.

• Step.SetPriorityExpr—Specifies the thread priority expression for
the Set Thread Priority operation.

• Step.GetPriorityExpr—Specifies the location to store the thread
priority for the Get Thread Priority operation.

Appendix B Synchronization Step Types

© National Instruments Corporation B-17 TestStand Reference Manual

Semaphore
Use Semaphore steps to limit concurrent access to a resource to a specific
number of threads. A semaphore stores a numeric count and allows threads
to increment (release) or decrement (acquire) the count as long as the count
stays equal to or greater than zero. If a decrement would cause the count to
go below zero, the thread attempting to decrement the count blocks until the
count increases. When multiple threads are waiting to decrement a
semaphore, the semaphore unblocks the threads in first in first out (FIFO)
order whenever another thread increments the semaphore count.

A semaphore with an initial count of one behaves like a lock, with one
exception. Like a lock, a one-count semaphore restricts access to a single
thread at a time. Unlike a lock, a thread cannot acquire a one-count
semaphore multiple times without first releasing it after each acquire.
When a thread attempts to acquire the semaphore a second time without
releasing it, the count is zero and the thread blocks. Refer to the Lock
section of this appendix for more information about Lock objects.

Step Properties
In addition to the common custom properties, the Semaphore step type
defines the following step properties:

• Step.Result.TimeoutOccurred—Set to True if the Acquire
operation times out. This property only exists if the step is configured
for the Acquire operation.

• Step.NameOrRefExpr—Contains the Semaphore Name expression
for the Create operation and the Semaphore Name or Reference
expression for all of the other operations.

• Step.AutoRelease—Contains a Boolean value that specifies whether
the Acquire operation automatically performs a release when the
Acquire lifetime expires.

• Step.LifetimeRefExpr—Contains the object reference expression for
the semaphore lifetime or acquire lifetime when you set either lifetime
to Use Object Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Acquire operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Acquire operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Acquire operation.

Appendix B Synchronization Step Types

TestStand Reference Manual B-18 ni.com

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Semaphore Exists expression for the
Get Status operation.

• Step.InitialCountExpr—Contains the Numeric expression that the
Create operation uses for the initial count of the semaphore.

• Step.NumThreadsWaitingExpr—Contains the Number of Threads
Waiting to Acquire the Semaphore expression for the Get Status
operation. Step.Operation contains a value that specifies the operation
the step performs. The valid values are 0 = Create, 1 = Acquire,
2 = Release, 3 = Get Status.

• Step.Lifetime—Contains a value that specifies the Lifetime setting
for the Create operation. The valid values are 0 = Same as Sequence,
1 = Same as Thread, 2 = Use Object Reference, 3 = Same as
Execution.

• Step.InitialCountOutExpr—Contains the Initial Semaphore Count
expression for the Get Status operation.

• Step.AcquireLifetime—Contains a value that specifies the lifetime
setting for the Acquire operation. The valid values are 0 = Same as
Sequence, 1 = Same as Thread, 2 = Use Object Reference. The
Acquire operation only uses this setting when Step.AutoRelease is
set to True.

• Step.CurrentCountExpr—Contains the Current Count expression
for the Get Status operation.

Batch Specification
When you write a process model, you can use Batch Specification steps to
define a group of threads where each thread in the group runs an instance
of the client sequence file. Defining a group allows you to perform Batch
Synchronization operations on the threads in the group. The TestStand
Batch process model uses Batch Specification steps to create a batch that
contains a thread for each test socket. For more information about the Batch
process model refer to the Batch Process Model section of Appendix A,
Process Model Architecture. For more information about batch
synchronization, refer to the Batch Synchronization section of this
appendix.

When you test each UUT in a separate thread, you use the Batch
Specification step to include the UUT threads in one batch. Use the Batch
Synchronization step to control the interaction of the UUT threads as they
execute the test steps.

Appendix B Synchronization Step Types

© National Instruments Corporation B-19 TestStand Reference Manual

Step Properties
In addition to the common custom properties, the Batch Specification step
type defines the following step properties:

• Step.Operation—Contains a value that specifies the operation the
step performs. The valid values are 0 = Create, 1 = Add Thread,
2 = Remove Thread, 3 = Get Status.

• Step.NameOrRefExpr—Contains the Name expression for the
Create operation and the Name or Reference expression for other batch
operations.

• Step.Lifetime—Contains a value that specifies the lifetime for the
Create operation. The valid values are 0 = Same as Sequence,
1 = Same as Thread, 2 = Use Object Reference, 3 = Same as
Execution.

• Step.LifetimeRefExpr—Contains the object reference expression for
the batch lifetime when you set the lifetime to Use Object Reference.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Batch Exists expression for the Get
Status operation.

• Step.ThreadRefExpr—Contains the Object Reference to Thread
expression for the Add Thread and Remove Thread operations.

• Step.OrderNumExpr—Contains the Order Number expression for
the Add Thread operation.

• Step.NumThreadsWaitingExpr—Contains the Number of Threads
Waiting at Synchronized Sections expression for the Get Status
operation.

• Step.NumThreadsInBatchExpr—Contains the Number of Threads
in Batch expression for the Get Status operation.

• Step.DefaultBatchSyncExpr—Contains the Default Batch
Synchronization expression for the Create operation.

• Step.DefaultBatchSyncOutExpr—Contains the Default Batch
Synchronization expression for the Get Status operation.

© National Instruments Corporation C-1 TestStand Reference Manual

C
IVI Step Types

TestStand provides several step types that enable you to configure and
acquire data from Interchangeable Virtual Instrument (IVI) class-compliant
instruments. IVI is an instrument driver standard that provides common
programming interfaces for several classes of instruments. IVI drivers exist
for a number of popular instruments, including all applicable devices from
National Instruments. For more information about IVI and IVI
class-compliant instrument drivers, refer to the National Instruments Web
site at ni.com/ivi.

You can view examples of the IVI step types in the <TestStand>\
Examples\IVI directory.

TestStand includes the following IVI step types:

• Dmm—Performs single-point and multipoint measurements with
digital multimeters.

• Scope—Performs single-point and waveform measurements with
oscilloscopes.

• Fgen—Generates predefined or custom waveforms using arbitrary
waveform generators.

• Power Supply—Controls and monitors the output of DC power
supplies.

• Switch—Connects or disconnects paths and routes, determines the
connectivity of two switches or the state of a route, and queries the
state of the switch module or virtual device.

• Tools—Sets or gets instrument attributes and performs utility
operations on any IVI instrument.

IVI step types offer a configuration-based approach to instrument control.
Use an initial step to configure an instrument, and then perform
measurements in one or more subsequent steps. TestStand references a
session to an instrument using the instrument logical name that you
configure in National Instruments Measurement & Automation Explorer
(MAX). TestStand automatically initializes the instrument session when
the instrument is first configured and automatically closes the instrument
session when the execution is closed. If two executions reference the same

Appendix C IVI Step Types

TestStand Reference Manual C-2 ni.com

logical name, the session is shared and the session closes when the last
execution is released.

IVI step types complement, but do not replace, the instrument
configuration and measurement operations you perform in code modules
that you write using LabVIEW, Measurement Studio, Microsoft Visual
Basic, or other tools. Although IVI step types are the easiest way to
configure and acquire data from IVI class instruments, you must use code
modules to control instruments under the following circumstances:

• When you need to precisely specify the instrument driver calls to
ensure optimal performance.

• When you need to call specific driver functions that an IVI class does
not support.

• When your instrument does not conform to an IVI class or does not
have an IVI driver.

• When you need to interleave your instrument control operations with
other code that must reside in a single code module.

Note TestStand does not install IVI-compliant instrument drivers or configure sample
logical names in MAX. Refer to the application help for the IVI Instruments category in
MAX for more information about where to obtain and how to install IVI-compliant
instrument drivers, as well as information about how to create logical names that the
IVI step types use.

Editing an IVI Step
To use an IVI step, insert an IVI step for the class of instrument you want
to control. To edit the step, right-click the step and select Edit <Step
Name> from the context menu. Figure C-1 shows the Configure operation
for the IVI Dmm step.

Appendix C IVI Step Types

© National Instruments Corporation C-3 TestStand Reference Manual

Figure C-1. IVI Dmm Step Configure Operation

Each Edit <Step Name> Step dialog box contains a Logical Name ring
control, which you use to select a logical name or a virtual instrument name
that you configure in MAX. Use the buttons to the right of the Logical
Name ring control to launch the Expression Browser dialog box and to
launch MAX.

Note All IVI names, such as logical names, virtual names, and channel names, are
case-sensitive. If you use logical names, driver session names, or virtual names in your
program, be sure that the name you use exactly matches the name in the IVI Configuration
Store file. Do not make any variations in the case of the characters in the name.

The Edit <Step Name> Step dialog box also contains an Operation ring
control, which specifies the action the step performs. Typical operations
include configuring the instrument, taking a reading, or showing/hiding a
graphical display panel for the instrument, also called a soft front panel
(SFP). Depending on the instrument, you can also select other low-level
actions such as Initiate, Send Software Trigger, or Get Information.

Note When you select an operation, the area under the Operation ring control changes.
Many operations group their settings on tab controls.

Appendix C IVI Step Types

TestStand Reference Manual C-4 ni.com

In some cases, when TestStand configures an instrument, the instrument
driver may coerce a settings value. Configuring an instrument might
result in an invalid value error for a particular setting because the
instrument-based values are not checked for validity until the configuration
actually occurs. Once configure completes successfully, you can issue all
of the other operations in subsequent steps.

Refer to the TestStand Help for more information about the Edit <Step
Name> Step dialog box associated with each IVI step type.

Extensions
The Configure operation configures the instrument to match the settings
as specified by the step. To enable instrument configuration controls that
apply to features that IVI defines as class extensions, select from the
Extensions tab the extended features that your instrument supports.
Figure C-2 shows the Extensions tab for the IVI Dmm step.

Figure C-2. IVI Dmm Extensions Tab

The Configure operation only handles those settings that are supported
by the base class specification and the extension groups specified on the
Extensions tab. For the best results, only enable those extensions that are
required for your application.

Appendix C IVI Step Types

© National Instruments Corporation C-5 TestStand Reference Manual

Operation Settings
Many of the operations, such as Configure and Fetch, allow you to specify
where the dialog box saves the Operation settings for the step. For example,
you could save the Configure settings in a shared variable so that multiple
steps could use the same settings. Figure C-3 shows the Operation Settings
tab for the Configure operation.

Figure C-3. IVI Dmm Operation Settings Tab

The Configuration Source ring control specifies the name of the property
or variable where TestStand stores the settings when you click OK. The
Load button reloads the settings from the specified property or variable
location.

Appendix C IVI Step Types

TestStand Reference Manual C-6 ni.com

Validating a Configuration
When you edit a step that configures an instrument, click Validate to test
your configuration before closing the Edit <Step Name> Step dialog box.
Refer to the TestStand Help for more information about the Validate IVI
Configuration dialog box.

Using Soft Front Panels
Each IVI session for an IVI step type can display a graphical display panel
for the instrument, also called a soft front panel (SFP). The Show and Hide
Soft Front Panel operations control whether TestStand displays a SFP for
the instrument.

When the SFP is visible, you can interact directly with the instrument
session that TestStand is controlling.

Refer to the TestStand Help for more information about the Show and Hide
Soft Front Panel operations.

Get Information
Use the Get Information operation for each instrument class step type to
retrieve low-level status and information from the instrument. For the
Get Information operation, you must specify an expression that contains a
variable or property to which the step assigns the retrieved value. In some
cases, you must specify a channel name for the value to retrieve.

Instrument Session Manager
IVI step types use a software component called Session Manager to share
named instrument connections. Use Session Manager to share instrument
connections in code modules that you write, even if you do not use IVI step
types. Refer to the Session Manager Help for more information by
selecting Start»National Instruments»Session Manager»NI Session
Manager Help.

Note Currently available drivers do not allow you to use the same instrument driver
session in more than one operating system process simultaneously.

Appendix C IVI Step Types

© National Instruments Corporation C-7 TestStand Reference Manual

IVI Dmm
Use the IVI Dmm step type to perform single-point and multipoint
measurements with digital multimeters.

Step Operations
The IVI Dmm step type supports the following operations:

• Configure—Configures the instrument to match the state as specified
by the step.

• Show Soft Front Panel—Displays the SFP for the instrument.

• Hide Soft Front Panel—Hides the SFP for the instrument.

• Read—Initiates and returns a measurement from an instrument.

• Initiate—Initiates a measurement.

• Fetch—Returns the measured value from a measurement that the
Initiate operation has started.

• Abort—Cancels the wait for a trigger.

• Send SW Trigger—Sends a software trigger command to trigger the
instrument.

• Get Information—Retrieves low-level status and information from
the instrument.

Refer to the TestStand Help for more information about each of these
operations.

Step Properties
In addition to the common custom properties, the IVI Dmm step type
defines the following step properties:

• Step.Result.Reading—Contains the measurement values for the Read
and Fetch operations. The property data type is either
NI_IviSinglePoint or NI_IviWave.

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
the step is set to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.Configuration—Contains the settings for the Configure
operation. The data type of this property is NI_IviDmmConfig.

Appendix C IVI Step Types

TestStand Reference Manual C-8 ni.com

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.Readings—Contains the settings for the Read and Fetch
operations.

• Step.GetInfo—Contains the settings for the Get Information
operation.

IVI Scope
Use the IVI Scope step type to acquire a voltage waveform from an analog
input signal with oscilloscopes.

Step Operations
The IVI Scope step type supports the following operations:

• Configure—Configures the instrument to match the state as specified
by the step.

• Show Soft Front Panel—Displays the SFP for the instrument.

• Hide Soft Front Panel—Hides the SFP for the instrument.

• Read—Initiates and returns a measurement from an instrument.

• Initiate—Initiates a measurement.

• Fetch—Returns the measured value from a measurement that the
Initiate operation has started.

• Abort—Cancels the wait for a trigger.

• Auto Setup—Performs an automatic setup on the instrument.

• Get Information—Retrieves low-level status and information from
the instrument.

Refer to the TestStand Help for more information about each of these
operations.

Appendix C IVI Step Types

© National Instruments Corporation C-9 TestStand Reference Manual

Step Properties
In addition to the common custom properties, the IVI Scope step type
defines the following step properties:

• Step.Result.Reading—Contains the measurement values for the Read
and Fetch operations. This property is an array of container, and the
size of the array is equal to the number of channels specified for the
Read or Fetch operation. The data type of each element of the array
is NI_IviSinglePoint, NI_IviWave, or NI_IviWavePair.

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
the step is set to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.Configuration—Contains the settings for the Configure
operation. The data type of this property is NI_IviDmmConfig.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.Readings—Contains the settings for the Read and Fetch
operations. The data type of this property is NI_IviScopeReadings.
The Channels subproperty is an array of type NI_IviReading.

• Step.GetInfo—Contains the settings for the Get Information
operation.

IVI Fgen
Use the IVI Fgen step type to instruct function generators to generate
predefined waveforms or custom waveforms using arbitrary waveform
generators.

Step Operations
The IVI Fgen step type supports the following operations:

• Configure—Configures the instrument to match the state as specified
by the step.

• Show Soft Front Panel—Displays the SFP for the instrument.

• Hide Soft Front Panel—Hides the SFP for the instrument.

• Initiate—Initiates signal generation if the instrument is idle.

Appendix C IVI Step Types

TestStand Reference Manual C-10 ni.com

• Abort—Aborts a previously configured output and returns the
function generator to the idle state.

• Send SW Trigger—Sends a software trigger command to trigger the
instrument.

• Get Information—Retrieves low-level status and information from
the instrument.

Refer to the TestStand Help for more information about each of these
operations.

Step Properties
In addition to the common custom properties, the IVI Fgen step type
defines the following step properties:

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
the step is set to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.Configuration—Contains the settings for the Configure
operation. The data type of this property is NI_IviFgenConfig.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.GetInfo—Contains the settings for the Get Information
operation.

IVI Power Supply
Use the IVI Power Supply step type to instruct power supplies to control
the output voltages and currents, and measure output values at the output
terminals.

Step Operations
The IVI Power Supply step type supports the following operations:

• Configure—Configures the instrument to match the state as specified
by the step.

• Show Soft Front Panel—Displays the SFP for the instrument.

• Hide Soft Front Panel—Hides the SFP for the instrument.

Appendix C IVI Step Types

© National Instruments Corporation C-11 TestStand Reference Manual

• Measure—Takes a measurement on the output signal and returns the
measured value.

• Initiate—Makes the power supply wait for a trigger.

• Abort—Cancels the wait for a trigger.

• Send SW Trigger—Sends a software trigger command to trigger the
instrument.

• Reset Output Protection—Resets the power supply’s output
protection on a specific channel after an overvoltage or overcurrent
condition occurs.

• Get Information—Retrieves low-level status and information from
the instrument.

Refer to the TestStand Help for more information about each of these
operations.

Step Properties
In addition to the common custom properties, the IVI Power Supply step
type defines the following step properties:

• Step.Result.Reading—Contains the measurement values for the
Measure operation. The property data type is an array of
NI_IviSinglePoint.

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
the step is set to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.Readings—Contains the settings for the Measure operation.

• Step.GetInfo—Contains the settings for the Get Information
operation.

• Step.ResetOutputProtection—Contains the channel setting for the
Reset Output Protection operation.

Appendix C IVI Step Types

TestStand Reference Manual C-12 ni.com

IVI Switch
The IVI Switch step type provides a high-level programming layer for
instruments that are compliant with the IVI Switch class and National
Instruments Switch Executive virtual devices. A switch is an instrument
that can establish a connection between two I/O channels. The IVI Switch
step type also supports IVI-compliant instruments that can perform trigger
scanning, and trigger-synchronized establishing or breaking of the paths.

The IVI Switch step type allows you to connect and disconnect paths or
routes, determine the connectivity of two switches or the state of a route,
and query the state of the switch module or virtual device.

National Instruments Switch Executive
National Instruments Switch Executive is an intelligent switch
management and routing application that you can use with TestStand.
NI Switch Executive allows you to interactively configure switch devices
from multiple vendors as a single virtual device. You can also specify
intuitive names for each channel within the virtual switch device and use
the end-to-end routing feature to automatically find switch routes by
selecting the channels you need to connect.

Use TestStand’s IVI Switch step type and the Switching tab on the Step
Properties dialog box to automate the defined routes required for each test.

Switching Tab
The Switching tab on the Step Properties dialog box specifies a switching
action that TestStand performs around the execution of the step. This
feature is only available if you install the National Instruments Switch
Executive software. Refer to the TestStand Help for more information
about the Switching tab on the Step Properties dialog box.

For more information about NI Switch Executive, refer to
ni.com/switchexecutive.

Route Specification String
When you instruct TestStand to connect or disconnect routes defined in
a NI Switch Executive virtual device, you must specify a route specification
string. The syntax of a route specification string consists of a series of
routes delimited by ampersands (&). National Instruments Switch
Executive ignores whitespace characters between tokens in a route
specification string.

Appendix C IVI Step Types

© National Instruments Corporation C-13 TestStand Reference Manual

routeOrGroup { & routeOrGroup } { & routeOrGroup } . . .

Where routeOrGroup is one of the following:

• Route name

• Route group name

• Fully specified path—Enclosed in square brackets and consists of a
series of channels delimited by "->". The following shows the format
of a fully specified path.

[channel {-> channel } {-> channel} . . .]

A channel must be one of the following:

• Channel alias name

• Unique name—A combination of the IVI device logical name and IVI
channel name separated by a "/" delimiter

• IVI channel name

Channels on either end of a bracketed, fully specified path must not be a
Configuration or a Hardwired channel. Only one end channel can be a
Source channel. The inner channels in a route specification string must be
either a Configuration or Hardwired channel. The following is an example
of a route specification string:

MyRouteGroup & MyRoute & [Dev1/CH3->CH4,CH4->R0]

Step Operations
The IVI Switch step type supports the following IVI switch operations:

• Connect/Disconnect—Connects or disconnects the Source and
Destination channels in the switch instrument.

• Configure Scan—Configures the switch module for scanning.

• Start Scan—Initiates a scanning operation.

• Wait—Blocks operations until all switches debounce for an
instrument.

• Configure Switch—Configures channels as Configuration or Source
channels, and configures specific paths between channels.

• Send Software Trigger—Sends a software trigger command to
trigger the instrument during a Scanning operation.

Appendix C IVI Step Types

TestStand Reference Manual C-14 ni.com

• Abort Scan—Cancels a Scanning operation.

• Get Information—Retrieves low-level status and information from
the instrument.

The IVI Switch step type supports the following Switch Executive
operations:

• Connect/Disconnect—Connects or disconnects switch routes for
a virtual device.

• Wait—Blocks until all switches debounce for a virtual device.

• Get Information—Retrieves low-level status and information from a
virtual device.

Refer to the TestStand Help for more information about each of these
operations.

Step Properties
In addition to the common custom properties, the IVI Switch step type
defines the following step properties:

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
the step is set to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.IviOperation—Contains a value that specifies the operation the
step is set to perform for IVI Switching mode.

• Step.ConnectDisconnect—Contains the settings for the
Connect/Disconnect operation.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation.

• Step.GetInfo—Contains the settings for the Get Information
operation.

• Step.ScanningConfig—Contains the settings for the Configure Scan
operation.

• Step.Wait—Contains the settings for the Wait operation.

• Step.Configure—Contains the settings for the Configure operation.

Appendix C IVI Step Types

© National Instruments Corporation C-15 TestStand Reference Manual

IVI Tools
Use the IVI Tools step type to perform low-level operations on
an instrument.

Step Operations
The IVI Tools step type supports the following operations:

• Get Session Info—Retrieve low-level session references and API
class handles to the IVI instrument.

• Show Soft Front Panel—Displays the SFP for the tool.

• Hide Soft Front Panel—Hides the SFP for the tool.

• Init—Initializes the driver or I/O resource for the session.

• Close—Closes the IVI session.

• Reset—Places the instrument in a known state.

• Self Test—Causes the instrument to perform a self-test.

• Revision Query—Queries the instrument driver and instrument for
revision information.

• Error Query—Returns instrument-specific error information.

• Get Error Info—Returns error information for the last IVI error for
a session.

• Set/Get/Check Attributes—Allows you to set, query, or verify the
value of attributes.

Refer to the TestStand Help for more information about each of these
operations.

Step Properties
In addition to the common custom properties, the IVI Tools step type
defines the following step properties:

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
the step is set to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

Appendix C IVI Step Types

TestStand Reference Manual C-16 ni.com

• Step.Init—Contains the settings for the Init operation.

• Step.SelfTest—Contains the settings for the Self Test operation.

• Step.SessionInfo—Contains the settings for the Get Session Info
operation.

• Step.RevisionQuery—Contains the settings for the Get Revision
Query operation.

• Step.ErrorQuery—Contains the settings for the Error Query
operation.

• Step.ErrorInfo—Contains the settings for the Get Error Info
operation.

• Step.Attributes—Contains the settings for the Set/Get/Check
Attributes operation.

© National Instruments Corporation D-1 TestStand Reference Manual

D
Database Step Types

TestStand includes the following built-in step types that you can use to
communicate with a database:

• Open Database

• Open SQL Statement

• Close SQL Statement

• Close Database

• Data Operation

• Property Loader

A simple sequence of Database steps might include the following:

1. Connect to the database using the Open Database step type.

2. Use the Open SQL Statement step type to issue a SQL query on tables
in the database.

3. Create new records, then get and update existing records using Data
Operation step types.

4. Use the Close SQL Statement step type to close the SQL query.

5. Close the database connection using the Close Database step type.

Note Use the Property Loader step type to import property and variable values from a file
or database during an execution.

The following sections describe each Database step type and their custom
step properties.

You can view examples of Database step types in the <TestStand>\
Examples\Database directory. Refer to the TestStand Help for more
information about each of the Database step types.

Open Database
Use the Open Database step type to open a database for use in TestStand.
An Open Database step returns a database handle that you can use to open
SQL statements.

Appendix D Database Step Types

TestStand Reference Manual D-2 ni.com

Step Properties
The Open Database step type defines the following step properties in
addition to the common custom properties:

• Step.ConnectionString—Specifies a string expression that contains
the name of the data link to open.

• Step.DatabaseHandle—Specifies the numeric variable or property
assigned to the value of the opened database handle.

• Step.RequiresParameters—Specifies whether the SQL statement
requires parameters to execute.

Close Database
Use the Close Database step type to close the database handle that you
obtain from an Open Database step type.

Tip National Instruments recommends placing Close Database steps in the Cleanup step
group.

Step Properties
The Close Database step type defines the following step property in
addition to the common custom properties:

• Step.DatabaseHandle—Specifies the name of the variable or
property that contains the open database handle that is to be closed.
The variable or property is of the Number data type.

Note TestStand does not automatically close open database handles. You must call a
Close Database step for your open handles. If you abort an execution, you must exit the
application process that loaded the TestStand Engine to guarantee that TestStand frees all
database handles. Selecting Unload All Modules from the File menu does not close the
handles.

Open SQL Statement
After you open a database, you must select a set of data in the database to
work with. Use the Open SQL Statement step type to select this data. After
you open an Open SQL Statement step, you can perform multiple
operations on that data set using the Data Operation steps. An Open SQL
Statement step returns a statement handle that you can use in the Data
Operation steps.

Appendix D Database Step Types

© National Instruments Corporation D-3 TestStand Reference Manual

Step Properties
The Open SQL Statement step type defines the following step properties
in addition to the common custom properties:

• Step.PageSize—Specifies the number of records in a page for the
SQL statement.

• Step.CommandTimeout—Specifies the amount of time, in seconds,
TestStand waits when attempting to issue a command to the open
database connection.

• Step.CacheSize—Specifies the cache size for the SQL statement.

• Step.MaxRecordsToSelect—Specifies the maximum number of
records the SQL statement can return.

• Step.CursorType—Specifies the cursor type that the SQL statement
uses.

• Step.CursorLocation—Specifies where the data source maintains
cursors for a connection.

• Step.MarshalOptions—Specifies the marshal options for the updated
records in the SQL statement.

• Step.LockType—Specifies the lock type for the records the SQL
statement selects.

• Step.CommandType—Specifies the command type of the SQL
statement.

• Step.DatabaseHandle—Specifies the name of the variable or
property that contains the database handle with which you open the
SQL statement.

• Step.StatementHandle—Specifies the numeric variable or property
that is assigned for the value of the SQL statement handle.

• Step.SQLStatement—Specifies a string expression that contains a
SQL command.

• Step.NumberOfRecordsSelected—Specifies the numeric variable or
property to which the step assigns the number of records the SQL
statement returns.

• Step.RequiresParameters—Specifies whether the SQL statement
requires input or output parameters to execute. If False, the step
immediately executes the SQL statement. If True, the step only
prepares the SQL statement, and a subsequent Data Operation step
must perform an Execute operation that defines the parameters for the
statement.

Appendix D Database Step Types

TestStand Reference Manual D-4 ni.com

Close SQL Statement
Use the Close SQL Statement step to close a SQL statement handle that you
obtain from an Open SQL Statement step.

Tip National Instruments recommends placing Close SQL Statement steps in the Cleanup
step group.

Step Properties
The Close SQL Statement step type defines the following step property in
addition to the common custom properties:

• Step.StatementHandle—Specifies the name of the variable or
property of type Number that contains the SQL statement handle that
is to be closed.

Data Operation
Use the Data Operation step type to perform operations on a SQL statement
that you open with an Open SQL Statement step. With the Data Operation
step, you can fetch new records, retrieve values from a record, modify
existing records, create new records, and delete records. For SQL
statements that require parameters, you can create parameters and set input
values, execute statements, close statements, and fetch output parameter
values.

Custom Properties
The Data Operation step type defines the following step properties in
addition to the common custom properties:

• Step.StatementHandle—Specifies a string expression that contains
the name of the SQL statement to operate on.

• Step.RecordToOperateOn—Specifies the record to operate on.
Valid values are 0 = New, 1= Current, 2 = Next, 3 = Previous,
4 = Index.

• Step.RecordIndex—Specifies the index of the record to operate on
when Step.RecordToOperateOn is set to fetch a specific index.

• Step.Operation—Specifies the operation to perform on the record.
Valid values are 0 = Fetch only, 1 = Set, 2 = Get, 3 = Put, 4 = Delete,
5 = Set and Put, 6 = Execute, 7 = Close.

• Step.SQLStatement—Specifies the SQL statement used by the Edit
Data Operation dialog box to populate the ring controls that contain
column names.

Appendix D Database Step Types

© National Instruments Corporation D-5 TestStand Reference Manual

• Step.ColumnListSource—Specifies the name of the variable or
property that stores the column-to-variable or column-to-property
mappings. The variable or property must be an array of type
DatabaseColumnValue. By default, the value is Step.ColumnList.

• Step.ColumnList—Specifies the column-to-variable or
column-to-property mapping to perform on a Get or Set operation.
The property must be an array of type DatabaseColumnValue.

The DatabaseColumnValue custom data type contains the following
subproperties:

– ColumnName—Specifies the name of the column from which to
get a value or to which to assign a value.

– ColumnNumber—Specifies the number of the column in the
SQL statement.

– Data—Specifies the variable or property to which TestStand
assigns the column value or the expression that TestStand
evaluates and assigns to the column.

– FormatString—Specifies an optional format string for dates,
times, and currencies. Use the empty string ("") if you want to use
the default format. Refer to the TestStand Help for a description of
valid format strings.

– WriteNull—Specifies whether to write NULL to the column
instead of the value in the Data expression property.

– Status—Indicates the error code returned for the Get or Set
operation.

– Direction—Contains an enumerated value that specifies whether
the parameter direction is In, Out, In/Out, or Return.

– Type—Contains an enumerated value that specifies whether the
parameter value is String, Number, Boolean, or Date/Time.

– Size—Specifies the maximum size of a string parameter.

Note You cannot encapsulate your data operations within a transaction. Transactions are
not available in the current version of the TestStand Database step types.

Property Loader
Use the Property Loader step type to dynamically load the values for
properties and variables from a text file, a Microsoft Excel file, or a DBMS
database at run time. For example, you can develop a common sequence
that can test two different models of a cellular phone, where each model
requires unique limit values for each step. If you use step properties to hold

Appendix D Database Step Types

TestStand Reference Manual D-6 ni.com

the limit values, you can include a Property Loader step in the sequence to
load the correct limit values into the step properties.

Place a Property Loader step in the Setup step group of a sequence. This
directs the Property Loader step to initialize the property and variable
values before the steps in the Main step group execute.

Loading From File
The source of file-based values can be a tab-delimited text file (.txt), a
comma-delimited text file (.csv), or an Excel file (.xls). The data is
presented in a table format. The following is an example of a tab-delimited
limits file with one data block specified by starting and ending data
markers.

Start Marker

End Marker

In the step name section the row names correspond to step names and the
column headings correspond to the names of step properties. Not all
columns apply to each row, and each row only contains values for the
columns that define properties that exist in the row’s corresponding step.
For variable sections, each row specifies the name of the property and its
corresponding value. Starting and ending data markers designate the
bounds of the table. A data file can contain more than one block of data.

<Step Name> Limits.Low Limits.High Limits.String

Voltage at Pin A 9.0 11.0

Voltage at Pin B 8.5 9.5

Self Test Output "SYSTEM OK"

<Locals> Variable Value

Count 100

<FileGlobals> Variable Value

Count 99

<StationGlobals> Variable Value

Power_On False

Appendix D Database Step Types

© National Instruments Corporation D-7 TestStand Reference Manual

Use the Importing/Exporting Properties command in the Tools menu to
export property and variable data in the appropriate table format.

Loading From Database
The source of database values is a recordset returned from an Open SQL
Statement step. The SQL statement recordset is presented in a table format,
where each row pertains to a particular sequence step or to a variable scope,
as shown in Table D-1. The column headings correspond to the names of
properties in the steps or variable scopes. Not all columns apply to each
row. Each row only contains values for the columns that define properties
or variables that are actually in the step or variable scope for the row.

For database sources, the Property Loader step can filter the data that the
SQL statement returns so that you only load values from rows that contain
specific column values. This is equivalent to the starting and ending data
markers when importing values from a file. For example, in Table D-1 you
can load the rows only for rows where the SEQUENCE NAME field
contains the value, Phone Test.seq.

Table D-1. Example Data for Property Loader Step

STEPNAME
LIMITS_

HIGH
LIMITS_

LOW
LIMITS_
STRING POWER_ON COUNT

SEQUENCE
NAME

Voltage at Pin A 9 11 — — — Phone Test.seq

Voltage at Pin B 8.5 9.5 — — — Phone Test.seq

Self Test Output — — "SYS OK" — — Phone Test.seq

<Locals> — — — — 100 Phone Test.seq

<File Globals> — — — — 99 Phone Test.seq

<Station Globals> — — — False — Phone Test.seq

Frequency at Pin A 100,000 10,000 — — — Frequency
Test.seq

Frequency at Pin B 90,000 9,000 — — — Frequency
Test.seq

Self Test Output — — "OK" — — Frequency
Test.seq

Appendix D Database Step Types

TestStand Reference Manual D-8 ni.com

Custom Properties
In addition to the common custom properties, the Property Loader step type
defines the following step properties:

• Step.Result.NumPropertiesRead—Indicates the total number of
values that the step loaded from the file or database.

• Step.Result.NumPropertiesApplied—Indicates the total number of
values the step assigned to properties or variables. A number less than
Step.Result.NumPropertiesRead indicates that the step was unable to
update properties or variables.

• Step.ColumnListSource—Specifies the name of the variable or
property that stores the list of column comparisons which you are
using to filter the rows in a database recordset. The variable or property
must be an array of type DatabaseColumnValue. By default, the value
is Step.ColumnList.

• Step.ColumnList—Specifies the column comparisons TestStand
makes on a recordset before loading its values into properties. This
property must be an array of type DatabaseColumnValue.

The DatabaseColumnValue custom data type contains the following
subproperties:

– ColumnName—Specifies the name of the column on which to
perform the comparison.

– ColumnNumber—Indicates the number of the column in the
recordset.

– Data—Specifies the expression that TestStand evaluates at run
time to compare against the column value.

– FormatString—Specifies an optional format string for dates,
times, and currencies. Use an empty string ("") if you want to use
the default format. Refer to the TestStand Help for a description of
valid format strings.

– Direction—Contains an enumerated value that specifies whether
the parameter direction is In, Out, In/Out, or Return.

– Type—Contains an enumerated value that specifies whether the
parameter type is String, Number, Boolean, or Date/Time.

– Size—Specifies the maximum size of a string parameter.

– WriteNull—Not used.

– Status—Not used.

Appendix D Database Step Types

© National Instruments Corporation D-9 TestStand Reference Manual

• Step.PropertiesListSource—Specifies the name of the variable or
property that stores the list of variables and properties into which to
load data. The variable or property must be an array of type
DatabasePropertyMapping. By default, the value is
Step.PropertiesList.

• Step.PropertiesList—Specifies the list of variables and properties in
which to load data. The list must be an array of type
DatabasePropertyMapping. Each element of the array defines a
mapping between the source data and a TestStand variable or property.

The DatabasePropertyMapping custom data type contains the
following subproperties:

– PropertyName—Specifies the name of the property or variable
to which a value is assigned.

– PropertyType—Specifies the scope of the property or variable,
such as step, local, file global, or station global. Valid values are:
0 = Step, 1 = Local, 2 = File Global; 3 = Station Global.

– DataType—Specifies the TestStand type of the property.
Valid values are: 1 = String, 2 = Boolean, 3 = Number.

– ColumnName—Specifies the name of the column from which
the value is obtained.

• Step.Database.SQLStatementHandle—Specifies the name of the
variable or property that contains the SQL statement handle the step
uses at run time to load values.

• Step.Database.SQLStatement—Specifies the SQL statement the
Edit Property Loader dialog box uses to populate ring controls that
contain column names.

• Step.Database.StepNameColumn—Specifies the name of the
column in the recordset that contains the names of the steps and
variable scopes that define the rows of data.

• Step.Database.AppendTypeName—Specifies whether TestStand
appends the data type name of the property to the column name when
selecting a property from the available list.

• Step.Database.MaxColumnSize—Specifies the maximum number
of characters for a column name.

• Step.Database.FilterUsingColumnList—Specifies if the step only
loads the rows that match the specific column value.

• Step.File.Path—Specifies a literal pathname for the data file.

• Step.File.DecimalPoint—Specifies the type of decimal point the file
uses.

Appendix D Database Step Types

TestStand Reference Manual D-10 ni.com

• Step.File.UseExpr—Specifies whether to use Step.File.Path or
Step.File.FileExpr for the pathname of the data file.

• Step.File.FileExpr—Specifies a pathname expression that TestStand
evaluates at run time.

• Step.File.Format—Specifies the type of delimiters in the file and the
file type. The possible values are Tab, Comma, or Excel.

• Step.File.Start.MarkerExpr—Specifies the expression for the
starting marker.

• Step.File.EndMarkerExpr—Specifies the expression for the ending
marker.

• Step.File.Skip—Specifies the string that, when it appears at the
beginning of a row, causes the step type to ignore the row.

• Step.File.MapColumnsUsingFirstRow—Specifies whether the first
row of each data block in the data file contains the names of the step
properties into which the step loads the property values.

• Step.File.ColumnMapping—Specifies the names of the properties
into which the step loads the values if
Step.File.MapColumnsUsingFirstRow is False.

© National Instruments Corporation E-1 TestStand Reference Manual

E
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni.com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards,
conformity documentation, example code, tutorials and
application notes, instrument drivers, discussion forums,
a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/support. Our online system helps you define your
question and connects you to the experts by phone, discussion
forum, or email.

• Training—Visit ni.com/training for self-paced tutorials, videos,
and interactive CDs. You also can register for instructor-led, hands-on
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 TestStand Reference Manual

Glossary

A

abort To stop an execution without running any of the steps in the Cleanup step
groups in the sequences on the call stack. When you abort an execution, no
report generation occurs.

active window The window that user input affects at a given moment. The title of an
active window is highlighted.

ActiveX
(Microsoft ActiveX)

Set of Microsoft technologies for reusable software components. Formerly
called OLE.

ActiveX control A reusable software component that adds functionality to any compatible
ActiveX control container.

ActiveX/COM Adapter See adapter.

ActiveX reference
property

A container of information that maintains a reference to an ActiveX object.
TestStand maintains the value of the property as an IDispatch or
IUnknown pointer.

ActiveX server Any executable code that makes itself available to other applications
according to the ActiveX standard. ActiveX implies a client/server
relationship in which the client requests objects from the server and asks
the server to perform actions on the objects.

adapter If an adapter is specific to an application development environment (ADE),
the adapter knows how to open the ADE, how to create source code for a
new code module in the ADE, and how to display the source for an existing
code module in the ADE. Some adapters support stepping into the source
code of the ADE while executing the step from the TestStand Sequence
Editor.

administrator A user profile that usually contains all privileges for a test station.

Application
Development
Environment (ADE)

A programming environment such as LabVIEW, LabWindows/CVI, or
Microsoft Visual Basic, in which you can create code modules and operator
interfaces.

Glossary

TestStand Reference Manual G-2 ni.com

ADO ActiveX Data Object.

Application
Programming
Interface (API)

A set of classes, methods, and properties that you use to control a specific
service, such as the TestStand Engine.

array property A property that contains an array of single-valued properties of the same
type.

ASCII American Standard Code for Information Interchange.

B

binding See early binding and late binding.

block diagram Pictorial description or representation of a program or algorithm. In
LabVIEW, the block diagram, which consists of executable icons called
nodes and wires that carry data between the nodes, is the source code for
the VI. The block diagram resides in the Diagram window of the VI.

breakpoint An interruption in the execution of a program.

built-in property A property that all steps or sequences contain. For example, the step run
mode property. TestStand normally does not display these properties in the
sequence editor, although it lets you modify some of them through dialog
boxes.

built-in step type
property

A property that is common to all steps of the same type. A built-in step
type property is either a class step type property or an instance step type
property.

button A dialog box item that, when selected, executes a command associated
with the dialog box.

C

C/C++ DLL Adapter See adapter.

call stack The chain of active sequences that are waiting for the nested subsequences
to complete.

Call Stack pane Displays the call stack for the execution thread that is currently selected in
the Threads control.

Glossary

© National Instruments Corporation G-3 TestStand Reference Manual

checkbox An input control in a dialog box that allows you to toggle between
two possible options.

class Defines a list of methods and properties that you can use with respect to the
objects that you create as instances of that class. A class is like a data type
definition except that it applies to objects rather than variables.

class step type
property

A built-in step property that only exists in the step type itself. TestStand
uses these properties to define how the step type works for all step
instances. Step instances do not contain their own copies of class
properties.

client sequence file A sequence file that contains the Main sequence that a process model
invokes to test a UUT. Each client sequence file contains a sequence called
MainSequence. The process model defines what is constant about your
testing process, whereas the client sequence file defines the steps that are
unique to the different types of tests you run.

clipboard A temporary storage area the operating system uses to hold data that you
cut, copy, or delete from a work area.

cluster A set of ordered, non-indexed data elements in LabVIEW of any data type
including numeric, Boolean, string, array, or cluster. The elements must be
all controls or all indicators.

code module A program module, such as a Windows Dynamic Link Library (.dll) or
LabVIEW VI (.vi), that contains one or more functions that perform a
specific test or other action.

code template A source file that contains skeleton code. The skeleton code serves as a
starting point for the development of code modules for steps that use a
particular step type.

Configuration
entry point

A sequence in the process model file that configures a feature of the process
model. Configuration entry points usually save configuration information
in a .ini file in the <TestStand>\Cfg directory. By default,
Configuration entry points are listed in the Configure menu. For example,
the default process model contains the Configuration entry point Config
Report Options. The Config Report Options entry point is listed as Report
Options in the Configure menu.

connection string A string version of the connection information required to open a session
to a database.

Glossary

TestStand Reference Manual G-4 ni.com

connector Part of a LabVIEW VI or function node that contains its input and output
terminals, through which data passes to and from the node.

container property A property that contains no values, and typically contains multiple
subproperties. Container properties are analogous to structures in
Microsoft Visual C/C++ and to clusters in LabVIEW.

context menu Access context menus by right-clicking on an object. Menu options in a
context menu pertain specifically to the object you have selected.

control An input and output device in a panel or window, in which you can enter
data or make a setting.

control flow The sequential order of instructions that determines execution order.

custom named
data type

A data type that you define and name. For example, you might create a
Transmitter data type that contains subproperties such as number of
channels, NumChannels, and power level, PowerLevel.

custom property A property that you define in a step type. Each step you create with the step
type has its own copy of the custom property. TestStand uses the value that
you specify for the custom property in the step type as the initial value of
the property in each new step you create. Normally, after you create a step,
you can change the value of the property in the step.

D

data link Connection information for opening a data source, such as a database.
A data link typically specifies the server on which the data resides, the
database or file that contains the data, the user ID, and permissions to
use when connecting to the data source.

data source A provider of data, such as a database.

DBMS Database Management Systems.

developer A user profile that usually contains all privileges associated with operating,
debugging, and developing sequences and sequence files, but excludes
configuration of user privileges, report options, and database options.

Glossary

© National Instruments Corporation G-5 TestStand Reference Manual

dialog box A user interface in which you specify additional information for the
completion of a command.

DLL Dynamic Link Library

E

early binding Setting that causes the ActiveX/COM Adapter to use IDs to specify to
automation servers what operations to perform on objects. See late binding.

Edit substep A substep that the engine calls when a developer or user edits the step. You
invoke the substep with the menu item that is listed in the context menu
above Specify Module. The Edit substep displays a dialog box in which the
sequence developer edits the values of custom step properties. For example,
the Edit Limits item is listed in the context menu for Numeric Limit Test
steps, and the Edit Pass/Fail Source item is listed in the context menu for
Pass/Fail Test steps.

engine A module or set of modules that provide an API for creating, editing,
executing, and debugging sequences. A sequence editor or operator
interface uses the services of a test executive engine.

Engine callback A sequence that TestStand invokes at specific points during execution. Use
Engine callbacks to tell TestStand to call certain sequences before and after
the execution of individual steps, before and after interactive executions,
after loading a sequence file, and before unloading a sequence file.

entry point A sequence in the process model file that TestStand displays as a menu
item, such as Test UUTs, Single Pass, and Report Options.

error occurred flag A Boolean flag, Step.Result.Error.Occurred, that indicates whether a
run-time error occurred in a step.

execution An object that contains information TestStand needs to run a sequence, its
steps, and any of the sequences it calls. You can suspend, interactively
debug, resume, terminate, or abort executions.

Execution entry point A sequence in a process model that runs tests against a UUT. Execution
entry points call the MainSequence callback in the client sequence file. The
default process model contains two execution entry points: Test UUTs and
Single Pass. By default, Execution entry points are listed in the Execute
menu. Execution entry points are only visible in the menu when the active
window contains a sequence file that has a MainSequence callback.

Glossary

TestStand Reference Manual G-6 ni.com

Execution object An object that contains all of the information TestStand needs to run a
sequence, its steps, and any subsequences it calls. Typically, the TestStand
Sequence Editor creates a new window for each execution.

Execution window A window in the sequence editor or operator interface that displays the
steps an execution runs. When execution is suspended, the Execution
window displays the next step to execute and provides single-stepping
options. You can also view variables and properties in any active sequence
context in the call stack.

expression A formula that calculates a new value from the values of multiple variables
or properties. In expressions, you can access all of the variables and
properties in the sequence context that is active when TestStand evaluates
the expression.

F

Front-End callback A common sequence that the sequence editor and operator interfaces call.
Front-End callbacks allow multiple applications to share the same
implementation for a specific operation. TestStand installs the sequence file
FrontEndCallback.seq, which contains the Front-End callback
sequence, LoginLogout.

Front-End callback
sequence file

A sequence file that contains Front-End callbacks. TestStand installs the
sequence file FrontEndCallback.seq, which contains the Front-End
callback sequence, LoginLogout.

front panel The interactive user interface of a LabVIEW VI. Modeled from the front
panel of physical instruments, it is composed of switches, slides, meters,
graphs, charts, gauges, LEDs, and other controls and indicators.

G

global variable TestStand defines two types of global variables: sequence file globals and
station globals. Sequence file globals are accessible by any sequence or step
in the sequence file. Station globals are accessible by any sequence file
loaded on the station. The values of station global variables are persistent
across different executions and even across different invocations of
TestStand.

GUI See operator interface.

Glossary

© National Instruments Corporation G-7 TestStand Reference Manual

H

hex hexadecimal.

hidden Execution
entry point

Execution entry points used by the main Execution entry points to initiate
test socket executions. These entry points are never displayed.

highlight The way in which input focus appears on a TestStand screen. To move the
input focus onto an item.

HTBasic Adapter See adapter.

I

IDispatch pointer A pointer to an interface that exposes objects, methods, and properties to
automation programming tools and other applications.

in-process When executable code runs in the same process space as the client, in other
words, an ActiveX server in a dynamic link library (DLL).

instance step type
property

A built-in step property that exists in each step instance. Each step that you
create with the step type has its own copy of the property. TestStand uses
the value you specify for an instance step type property in the step type as
the initial value of the property in each new step that you create. Normally,
after you create a step, you can change the values of its instance step type
properties.

interactive mode When you run steps by selecting one or more steps in a sequence and select
Run Selected Steps or Loop Selected Steps from the context menu or menu
bar. The selected steps in the sequence execute, regardless of any branching
logic that the sequence contains. The selected steps run in the order in
which they appear in the sequence.

IUnknown pointer An interface, provided by all ActiveX objects, that enables you to control
the lifetime and obtain other interfaces of an object.

K

kill To stop a running, terminating, or aborting execution by terminating the
thread of the execution without any cleanup of memory. This action can
leave TestStand in an unreliable state.

Glossary

TestStand Reference Manual G-8 ni.com

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench. A program
development application based on the G programming language and used
commonly for test and measurement purposes.

LabVIEW Adapter See adapter.

LabWindows/CVI
Adapter

See adapter.

late binding Setting that causes the ActiveX/COM Adapter to use names to specify to
a server what operations to perform on objects. See early binding.

legacy Characteristic of a version of TestStand prior to TestStand 3.0.

list box A control that displays a list of possible choices.

local variable A property of a sequence that holds a value or additional subproperties.
Only a step within the sequence can directly access the property value.

M

Main sequence The sequence that initiates the tests on a UUT. The process model invokes
the Main sequence as part of the overall testing process. The process model
defines what is constant about your testing process, whereas the Main
sequence defines the steps that are unique to the different types of tests
you run.

manager controls Controls that call the TestStand API to perform tasks such as loading files,
launching executions, and retrieving sequence information. Manager
controls are visible at design time but invisible at run time.

MB Megabytes of memory.

menu bar Horizontal bar that contains names of main menus.

method Performs an operation or function on an object.

MFC Microsoft Foundation Class Library.

Model callback A mechanism that allows a sequence file to customize the default behavior
of a sequence in the process model.

Glossary

© National Instruments Corporation G-9 TestStand Reference Manual

Model sequence file A special type of sequence file that contains process model sequences.
The sequences within the Model sequence file direct the high-level
sequence flow of an execution when you test a UUT.

Module adapter A module adapter knows how to load and call a code module, how to pass
parameters to a code module, and how to return values and status from a
code module.

multi-threaded
apartment model (MTA)

A model in which an ActiveX object can be accessed from any thread at any
time. The operating system does not synchronize access to the object. You
cannot create or display a window that contains an ActiveX control from a
thread that is initialized using the mutli-threaded model. ActiveX controls
require threads initialized using the single-threaded apartment model. By
default, all execution threads are initialized using the multi-threaded
apartment model.

N

named data type A type of variable or property that you give a unique name. The data type
usually contains multiple subproperties, thus creating an arbitrarily
complex data structure. All variables or properties that use the data type
have the same data structure, but the values they contain can differ.

nested Called by another step or sequence. If a sequence calls a subsequence,
the subsequence is nested in the invocation of the calling sequence.

nested interactive
execution

When you run steps interactively from an Execution window for a normal
execution that is suspended at a breakpoint. You can run steps only in the
sequence and step group in which execution is suspended. The selected
steps run within the context of the normal execution.

.NET Adapter See adapter.

normal execution When you start an execution in the sequence editor by selecting Run
<Sequence Name>, where <Sequence Name> is the name of the sequence
that you are running, or one of the process model entry points from the
Execute menu.

normal sequence file Any sequence file containing sequences that test UUTs.

numeric property A 64-bit, floating-point value in the IEEE 754 format.

Glossary

TestStand Reference Manual G-10 ni.com

O

object A service that an ActiveX server makes available to clients.

ODBC Open Database Connectivity.

OLE-DB Object Linking and Embedding Database.

operator A user profile that usually contains all privileges associated with operating
a test station, but excludes debugging of sequence executions, editing of
sequence files, and configuration of user privileges, station options, report
options, and database options.

operator interface A program that provides a graphical user interface (GUI) for executing
sequences on a production station.

out-of-process When executable code does not run in the same process space as the client,
such as an ActiveX server in an executable.

P

pop-up menus See context menu.

post actions Actions that TestStand takes depending on the pass/fail status of the step or
a custom condition that the engine evaluates after executing a step. Post
actions allow you to execute callbacks or jump to other steps after executing
the step.

Post-Step substep A substep that the engine invokes after calling a code module. For example,
a Post-Step substep might call a code module that compares the values the
code module stored in step properties against limit values that the Edit
substep stored in other step properties.

Pre-Step substep A substep that the engine invokes before calling the code module. For
example, a Pre-Step substep might call a code module that retrieves
measurement configuration parameters and stores them into step properties
for use by the code module.

preconditions A set of conditions for a step that must be True for TestStand to execute
the step during the normal flow of execution in a sequence.

Glossary

© National Instruments Corporation G-11 TestStand Reference Manual

process A running application that consists of a private memory space and other
operating-system resources that are visible to the process. A process also
contains one or more threads that run in the context of the process.

process model A sequence file you designate that performs a standard series of operations
before and after a test executive executes the sequence that performs the
tests. Common operations include identifying the UUT, notifying the
operator of pass/fail status, generating a test report, and logging results.

property A container of information, which stores and maintains a setting or attribute
of an object. A property can be of type number, string, Boolean, container,
ActiveX reference, a user-defined data type, or an array of these types.
A property can contain a single value, an array of values of the same type,
or no value at all. A property can also contain any number of subproperties.
Only a container property has the ability to contain any number of
subproperties. Each property has a name and a comment.

property-array
property

A property containing a value that is an array of subproperties of a single
type. In addition to the array of subproperties, property-array properties can
contain any number of subproperties of other types.

R

record set The retrieved records that an SQL SELECT command or query returns.

reference count Information that each ActiveX object uses to keep track of the number of
things that reference it. This allows the object to determine when to free the
resources it uses.

reference property See ActiveX reference property.

resource string Text strings stored in an external file so that you can alter the strings
without directly altering the application.

root interactive
execution

When you run selected steps from a Sequence File window in an
independent execution. Root interactive executions do not invoke process
models.

RTF Rich Text Format.

run mode The mode in which you execute a step, such as normal, skip, force pass,
or force fail.

Glossary

TestStand Reference Manual G-12 ni.com

run-time error An error condition that forces an execution to terminate. When the error
occurs while running a sequence, TestStand jumps to the Cleanup step
group, and the error propagates to any calling sequence up the call stack to
the top-level sequence.

RunState Contains properties that describe the state of execution in the sequence
invocation.

S

s seconds.

sequence Located within a sequence file, a sequence contains a series of steps that
you specify to execute in a particular order. When and if a step is executed
can depend on the results of previous steps.

Sequence Adapter See adapter.

sequence context A TestStand object that contains references to all global variables and all
local variables and step properties in active sequences. The contents of the
sequence context changes depending on the currently executing sequence
and step.

sequence editor A program that provides a graphical user interface (GUI) for creating,
editing, and debugging sequences.

sequence file A file that contains the definition of one or more sequences.

Sequence File window A separate window within the sequence editor in which a sequence file
appears.

single-threaded
apartment model (STA)

A model in which ActiveX objects execute within a single thread. The
operating system synchronizes all access to the object when accessing
the object from other threads. You must create objects that use the
single-threaded apartment model, such as ActiveX controls, in threads
that are initialized to use the single-threaded apartment model. TestStand
executes Edit substeps in threads initialized to use the single-threaded
apartment model to allow the substep to display windows that include
ActiveX controls.

single-valued property A property that contains a single value. TestStand has four types of these
properties: number, string, Boolean, and object reference.

soft front panel (SFP) A software graphical display for an instrument.

Glossary

© National Instruments Corporation G-13 TestStand Reference Manual

source code template A set of source files that contain skeleton code, which serves as a starting
point for the development of code modules for steps. TestStand uses the
source code template when you click Create Code on the Source Code tab
on the Specify Module dialog box for a step.

SQL Null An empty column in a row in a database table.

SQL Statement data The retrieved records that an SQL SELECT command or query returns.

standard named
data type

A data type that TestStand defines and names. You can add subproperties
to the standard data types, but you cannot delete any of their built-in
subproperties. The standard named data types are Path, Error, and
CommonResults.

station A complete TestStand test implementation that operators, developers,
and administrators use to perform tests.

Station callback
sequence file

A sequence file that contains the Station callback sequences. Station
callbacks run before and after the engine executes each step in any normal
or interactive execution.

station global variables Variables that are persistent across different executions and even across
different invocations of the sequence editor or operator interfaces. The
TestStand Engine maintains the value of station global variables in a file
on the run-time computer.

station model A process model that you select to use for all sequence files for a station.
The TestStand installation program establishes SequentialModel.seq
as the default station model file. Use the Station Options dialog box to
select a different station model.

step An element that you can insert into a sequence that performs an action, such
as calling a code module to perform a specific test. Typically, a sequence
contains a series of steps that define your test and execution flow.

step group A set of steps in a sequence. A sequence contains the following groups of
steps: Setup, Main, and Cleanup. When TestStand executes a sequence, the
steps in the Setup step group execute first, the steps in the Main step group
execute next, and the steps in the Cleanup step group execute last.

step property A property of a step.

Glossary

TestStand Reference Manual G-14 ni.com

step result A container property that contains a copy of the subproperties from the
Result property of a step and additional execution information such as the
name of the step and its position in the sequence. TestStand automatically
creates a step result as each step executes and places the step result into a
result list that TestStand uses to generate its reports.

step status A string value that indicates the status of a step in an execution. Every step
in TestStand has a Result.Status property. Although TestStand does not
impose restrictions on the values to which the step or its code module can
set the status property, TestStand and the built-in step types use and
recognize a predefined set of values.

step type A component that defines a set of custom step properties and standard
behavior for each step of that type. All steps of the same type have the same
properties, but the values of the properties can differ. Step types define their
standard behaviors using substeps.

step-type-specific
dialog box

A dialog box that step types display when you invoke their Edit substep.
The dialog box lets you modify step properties that are specific to the step
type. You invoke the dialog box with the menu item that is listed in the
context menu above Specify Module. For example, the Edit Limits item is
listed in the context menu for Numeric Limit Test steps, and the Edit
Pass/Fail Source item is listed in the context menu for Pass/Fail Test steps.

subsequence A sequence that another sequence calls. You specify a subsequence call as
a step in the calling sequence.

substeps Actions that a step type performs for a step other than calling the code
module. You define a substep by selecting an adapter and specifying a
module call. TestStand defines three different types of substeps: Edit
substep, Pre-Step substep, and Post-Step substep.

substep module The code module that a Edit, Pre-Step, or Post-Step substep calls.

Glossary

© National Instruments Corporation G-15 TestStand Reference Manual

T

technician A user profile that usually contains all privileges associated with operating
and debugging sequences and sequence files, but excludes editing of
sequence files and configuration of user privileges, station options, report
options, and database options.

template See code template.

terminal Object or region on a LabVIEW VI node through which data passes.

terminate To stop an execution by halting the normal execution flow and running all
the Cleanup step groups in the sequences on the call stack.

test executive engine See engine.

TestStand UI
Controls Library

Provides a set of common commands that you can add to your application.
Connect these commands to a TestStand button or application menu item to
automatically execute the command.

ThisContext Holds a reference to the current sequence context. You usually use this
property to pass the entire sequence context as an argument to a
subsequence or a code module. See also sequence context.

thread A subprocess that is part of a process or application. A thread can execute
any part of the code of an application, and other threads within a process
execute concurrently. All threads under a process share the memory space
and other operating-system resources of their respective processes.

U

Unit Under Test (UUT) The device or component that you are testing.

User Manager The component of the TestStand Engine that maintains a list of users, their
login names and passwords, and their privileges. You can access the user
manager from the User Manager window in the sequence editor.

Glossary

TestStand Reference Manual G-16 ni.com

V

variables A property that you can freely create in a certain context. You can have
variables that are global to a sequence file or local to a particular sequence.
You can also have station global variables.

variables window A window that shows the values of all the currently active variables or
properties.

variant Data type that can hold any defined type of data.

VI Virtual Instrument.

VI library Special file of type .LLB that contains a collection of related VIs for
a specific use.

visible controls Controls that connect to manager controls to automatically display
information or to enable the user to select items to view.

W

Watch Expression pane A pane that shows the values of user-selectable variables and expressions
that are currently active.

window A working area that supports specific tasks related to developing and
executing programs.

wire Tool used in LabVIEW to define data paths between source and sink
terminals.

© National Instruments Corporation I-1 TestStand Reference Manual

Index

A
aborting execution, 3-5 to 3-6
Access databases. See Microsoft Access
Action steps, 4-7
ActiveX Data Objects (ADO), 6-3
ActiveX/COM Adapter, 5-8 to 5-11

compatibility options for Visual Basic,
5-9 to 5-11

configuring, 5-9
definition, 1-4
registering and unregistering servers, 5-9
running and debugging servers, 5-8 to 5-9
using with TestStand, 5-9 to 5-11

adapters. See module adapters
ADO (ActiveX Data Objects), 6-3
Application Development Environment

(ADE), 1-2
Application Manager control

command-line arguments, 9-26
purpose and use, 9-3 to 9-4

architecture of TestStand. See TestStand
architecture overview

Array Bounds dialog box (figure), 12-4
arrays

array property, 1-6
dynamic array sizing, 12-8
empty arrays, 12-4 to 12-5
modifying values, 12-8
property-array property, 1-6
specifying array sizes, 12-4 to 12-5

automatic result collection. See result collection

B
Batch process model, A-24 to A-41

Configuration entry points, A-29
hidden Execution entry points, A-29
main Execution entry points, A-26
Model callbacks

overriding client sequence file,
A-30 to A-31

unique to model, A-32
overview, A-5
sequences (figure), A-24 to A-25
Single Pass entry point (table),

A-38 to A-39
Single Pass–Test Socket entry point (table),

A-4 to A-41
Test UUTs entry point (table), A-32 to A-36
Test UUTs–Test Socket entry point (table),

A-36 to A-37
Utility sequences

hidden Execution entry point, A-29
main Execution entry point,

A-26 to A-28
Utility subsequences, A-31

Batch reports, 6-19
Batch Specification steps, B-18 to B-19
Batch Synchronization steps, B-13 to B-16

Mismatched sections, B-14 to B-15
Nested sections, B-15
One Thread Only sections, B-14
Parallel sections, B-14
requirements for Enter and Exit

operations, B-15
Serial sections, B-14
step properties, B-15 to B-16
synchronized sections, B-13 to B-15

Index

TestStand Reference Manual I-2 ni.com

Bounds tab, Data Type Properties dialog
box, 12-12

built-in database step types. See database step
types

built-in properties
definition, 1-7
sequence properties, 1-10

built-in step type properties
class step type properties, 13-3
instance step type properties, 13-3

built-in step types, 4-1 to 4-18
See also Step Properties dialog box; step

types
any module adapter, 4-6 to 4-13

Action steps, 4-7
Multiple Numeric Limit Test,

4-10 to 4-11
Numeric Limit Test, 4-8 to 4-10
Pass/Fail Test, 4-7 to 4-8
String Value Test, 4-11 to 4-13

custom properties in common, 4-4 to 4-5
customizing, 13-2
error occurred flag, 4-5
module adapter not used, 4-14 to 4-18

Call Executable, 4-17
Goto, 4-15
Label, 4-15
Message Popup, 4-15 to 4-16
Property Loader, 4-18
Statement, 4-14

overview, 4-1 to 4-6
run-time errors, 4-5
Sequence Call step, 4-13 to 4-14
specific module adapters, 4-13 to 4-14
step status, 4-5
using, 4-1 to 4-2

Button control
command connections, 9-9
description (table), 9-5

C
C/C++ DLL Adapter

creating event handlers (table), 9-15
debugging LabVIEW DLLs called

with, 5-4
definition, 1-4
localization functions (table), 9-23
overview, 5-2 to 5-3
specifying, 5-3
TestStand Utility Functions Library

(table), 9-20
updating menus (table), 9-21
using TestStand user interface controls

with Visual C++, 9-14
C/C++ Struct Passing tab, Data Type

Properties dialog box, 12-12
Call Executable steps, 4-17
callback sequences

customizing, 8-2
Engine callbacks, 10-6 to 10-10

available engine callbacks (table),
10-7 to 10-9

examples of using, 10-9
overview, 1-13, 10-6
purpose and use, 3-12
special requirements (notes),

10-9 to 10-10
Front-End callbacks

customizing, 10-10
overview, 1-13

Model callbacks
Batch process model

overriding client sequence file,
A-30 to A-31

unique to model, A-32
defining, 10-3
overview, 1-13, 10-5
Parallel process model, A-19 to A-20
Sequential process model,

A-9 to A-11

Index

© National Instruments Corporation I-3 TestStand Reference Manual

overview, 1-13, 2-2
types of callbacks (table), 1-13

caption connections, 9-10 to 9-11
CaptionSources enumeration, 9-10
class step type properties, 13-13
client sequence file, 1-12
Close Database step type, D-2
Close SQL Statement step type, D-4
Cluster Passing tab, Data Type Properties

dialog box, 12-12
code modules, 1-1
code templates

creating, 13-9
customizing, 13-9
module adapters, 5-2
multiple templates per step type, 13-9
step types, 1-8, 13-9
template files for different environments,

13-6 to 13-8
legacy code templates, 13-7, 13-8
locations of default code templates

(table), 13-7
Code Templates tab, Step Properties dialog

box, 13-6 to 13-9
columns, in databases, 6-1
ComboBox control

connecting lists, 9-8
description (table), 9-6

command connections, 9-9 to 9-10
CommandKinds enumeration constant,

9-9, 9-21
command-line arguments, 9-26
CommonResults custom data type, 3-8
CommonResults standard data type,

12-9 to 12-10
comparing and merging sequence files, 2-2
Components directory, 8-4 to 8-5

customizing, 8-4
subdirectories (table), 8-5

configuration
See also customizing TestStand
ActiveX/COM Adapter, 5-9
IVI step types, C-5 to C-6
module adapters, 5-1
.NET Adapter, 5-7
operator interface configuration file

adding custom application settings,
9-27 to 9-28

location, 9-27
remote sequence execution, 5-15 to 5-19

Windows 98, 5-18 to 5-19
Windows 2000/NT, 5-17 to 5-18
Windows XP, 5-16 to 5-17

TestStand, 8-8 to 8-10
Configure menu, 8-10
sequence editor or operator interface

startup options, 8-8 to 8-10
Configuration entry points

Batch process model, A-29
entry point sequences, 10-5
Parallel process model, A-18
Sequential process model, A-8
types of entry points, 10-1, A-4

Configure Database Options entry point, A-8
Configure menu, 8-10
Configure Model Options entry point, A-8
Configure Report Options entry point, A-8
connection string, in data links, 6-5
contacting National Instruments, E-1
container properties, 1-6
conventions used in manual, xv
custom data types

creating new, 12-10 to 12-11
overview, 1-7

custom named data types, 1-7
custom operator interfaces. See operator

interfaces, creating

Index

TestStand Reference Manual I-4 ni.com

custom properties
See also step properties
built-in step types, 4-4 to 4-5
custom result properties, 3-7 to 3-8
definition, 1-7
lifetime of custom step properties, 3-3

custom step types. See step types
custom substeps, 13-5
customer

education, E-1
professional services, E-1
technical support, E-1

customizing TestStand, 8-1 to 8-8
callbacks, 8-2
creating string resource files, 8-6 to 8-8
data types, 8-2
directory structure, 8-3 to 8-5

components directory, 8-4 to 8-5
NI and User subdirectories, 8-4
subdirectories (table), 8-3

operator interfaces, 8-1
process model, 8-1
step types, 8-2
Tools menu, 8-2

D
data links, 6-13 to 6-15

connection strings, 6-5
definition, 6-5
example setup for Microsoft Access,

6-13 to 6-15
creating result tables, 6-14 to 6-15
specifying data link, 6-14

purpose and use, 6-5
specifying, 6-5
using ODBC Administrator, 6-13

Data Operation step type, D-4 to D-5

Data Type Properties dialog box,
12-11 to 12-12

Bounds tab, 12-12
C/C++ Struct Passing tab, 12-12
Cluster Passing tab, 12-12
General tab, 12-11 to 12-12
.NET Struct Passing tab, 12-12
Version tab, 12-12

data types, 12-1 to 12-13
See also types
arrays

dynamic sizing, 12-8
empty arrays, 12-4 to 12-5
modifying, 12-8
specifying array sizes, 12-4 to 12-5

context menu items for using,
12-1 to 12-2

creating, 12-1 to 12-3
categories of types, 12-2
graphical interfaces for accessing

types (table), 11-1 to 11-2
new custom data type,

12-10 to 12-11
using context menus (table), 12-1

custom data types
creating new, 12-10 to 12-11
overview, 1-7

customizing
built-in data types, 12-11
overview, 8-2
using Insert Field submenu, 12-13

displaying, 12-5 to 12-6
Insert Local submenu, 12-2 to 12-3
local variable data types (table), 12-6
modifying types and values, 12-6 to 12-8

object references, 12-7
single values, 12-7

properties common to all data types
custom properties, 12-13
Data Type Properties dialog box,

12-11 to 12-12

Index

© National Instruments Corporation I-5 TestStand Reference Manual

standard named data types, 12-8 to 12-10
CommonResults, 12-9 to 12-10
Error, 12-9 to 12-10
Path, 12-9
purpose and use, 1-7, 12-8 to 12-10

database client technology. See Microsoft
databases

database concepts, 6-1 to 6-6
data links, 6-5
database logging implementation, 6-6
database sessions, 6-3
database table example (figure), 6-2
databases and tables, 6-1 to 6-2
fields and columns, 6-1
Microsoft ADO, OLE DB, and ODBC

technologies, 6-3 to 6-4
records and rows, 6-1

database logging
implementation in TestStand, 6-6
Logging property in sequence context,

6-8 to 6-9
On-The-Fly Database Logging

option, 6-12
preparation for using, 6-7 to 6-8

Database Options dialog box
enabling database logging, 6-7
specifying options, 6-6

database result tables, 6-9 to 6-12
adding support for other database

management systems, 6-10 to 6-12
creating default result tables, 6-10
default TestStand table schema,

6-9 to 6-10
STEP_RESULT table schema, 6-9
UUT_RESULT table schema, 6-9

discarding results
On-The-Fly database logging, 6-12
On-The-Fly report generation, 6-21

specifying for Microsoft Access
(example), 6-14

database step types, D-1 to D-10
Close Database, D-2
Close SQL Statement, D-4
Data Operation, D-4 to D-5
Open Database, D-1 to D-2
Open SQL Statement, D-2 to D-3
Property Loader, D-5 to D-10

custom properties, D-8 to D-10
loading from database, D-7
loading from file, D-6 to D-7

Database Viewer
creating default results tables, 6-10
creating result tables for Microsoft

Access, 6-14 to 6-15
overview, 6-12

debugging
ActiveX Automation servers, 5-8 to 5-9
DLLs, 5-3 to 5-5

creating type libraries, 5-5
LabVIEW DLLs called with C/C++

DLL Adapter, 5-4
loading subordinate DLLs, 5-5
options for stepping out of DLL

functions (table), 5-4
using Microsoft Foundation Class

(MFC) Library, 5-4
HTBasic Adapter, 5-12
.NET assemblies, 5-6 to 5-7

default result tables. See database result tables
deploying TestStand systems. See TestStand

Deployment Utility
diagnostic resources, E-1
directory structure

process model files, A-6
TestStand, 8-3 to 8-5

Components directory, 8-4 to 8-5
NI and User subdirectories, 8-4
subdirectories (table), 8-3

Disable Properties tab, Step Properties dialog
box, 13-6

DisplayExecution event, 9-17

Index

TestStand Reference Manual I-6 ni.com

displaying
custom properties of step types, 13-10
data types, 12-5 to 12-6
windows and views that display types

(table), 11-1 to 11-2
DisplaySequenceFile event, 9-16
documentation

conventions used in manual, xv
online library, E-1

drivers
instrument, E-1
software, E-1

dynamic array sizing, 12-8

E
Edit Flags dialog box, 12-12
Edit Sequence Call dialog box, 5-14
Edit substep, Substeps tab, 13-5
editing

IVI steps, C-2 to C-4
special editing capabilities for sequence

files, 10-3 to 10-5
callback sequences, 10-5
entry point sequences, 10-5
normal sequences, 10-4
Sequence File Properties dialog box,

10-3 to 10-4
empty arrays, 12-4 to 12-5
Engine callbacks, 10-6 to 10-10
available engine callbacks (table),

10-7 to 10-9
examples of using, 10-9
overview, 1-13, 10-6
purpose and use, 3-12
special requirements (notes),

10-9 to 10-10
Engine.StationOptions.Language

property, 9-22

entry points
See also Execution entry points
Configuration entry points, 10-1
definition, 1-12
overview, 1-12

error occurred flag, built-in step types, 4-5
Error standard data type, 12-9 to 12-10
event handling, 9-15 to 9-17

creating event handler (table), 9-15
DisplayExecution event, 9-17
DisplaySequenceFile event, 9-16
ExitApplication event, 9-16
ReportError event, 9-16
Wait event, 9-16

example code, E-1
execution

See also result collection
definition, 3-1
directly executing sequences, 3-4
Engine callbacks, 3-12
Execution entry points. See Execution

entry points
Execution window

multiple window applications, 9-25
viewing executions, 3-3

interactive execution, 3-5
overview, 3-1
run-time errors, 3-16
sequence context, 3-2 to 3-3
Sequence Editor Execution window, 3-3
step execution (table), 3-12 to 3-13
step status property

failures, 3-15
standard values (table), 3-15

terminating and aborting executions,
3-5 to 3-6

Execution entry points
Batch process model
entry point sequences, 10-5

Index

© National Instruments Corporation I-7 TestStand Reference Manual

hidden Execution entry points.
Batch process model, A-29

Utility sequences, A-29
Parallel process model, A-18

main Execution entry points, A-26
overview, 3-4
Parallel process model
Single Pass entry points, A-38 to A-39
Test UUT entry points (table), A-21,

A-32 to A-36
Test UUTs–Test Socket entry point

(table), A-22, A-36 to A-37
types of entry points, A-16
Sequential process model

Single Pass entry points, A-14
Test UUT entry points (table),

A-12 to A-13
types of entry points, A-8

Single Pass
Batch model, A-38 to A-39
definition, 10-1, A-3
Parallel model, A-23
Sequential model, A-14

Single Pass entry points, A-23
Test UUTs

Batch model (table), A-33 to A-36
definition, 10-1, A-3
Parallel model (table), A-21
Sequential model (table),

A-12 to A-13
Test UUTs–Test Socket entry point

Batch model (table), A-36 to A-37
Parallel model (table), A-22

types of entry points, 10-1, A-3
Utility sequences

hidden Execution entry point, A-29
main Execution entry point,

A-26 to A-28
Execution object, 1-14
execution pointer, 3-1

Execution window
multiple window applications, 9-25
viewing executions, 3-3

ExecutionView Manager control
connecting views, 9-7
purpose and use, 9-4 to 9-5
single window applications, 9-23 to 9-24

ExitApplication event, 9-16
ExpressionEdit control

caption connections, 9-10
description (table), 9-6

expressions, 1-5 to 1-6
Expressions tab, Step Properties dialog

box, 4-4
Extensions tab, IVI step types, C-4

F
failure chain in reports, 6-19
failure of steps, 3-15
fields, in databases, 6-1
file collection, TestStand Deployment Utility,

14-3 to 14-4
Front-End callbacks

customizing, 10-10
overview, 1-13

G
General tab

Data Type Properties dialog box,
12-11 to 12-12

Step Properties dialog box, 13-4
Get Information operation, IVI step types, C-6
global variables

definition, 1-5
sequence files, 2-2
station global variables, 1-5

Goto steps, 4-15

Index

TestStand Reference Manual I-8 ni.com

H
handling events. See event handling
help

professional services, E-1
technical support, E-1

hidden Execution entry points
Batch process model, A-29

Utility sequences, A-29
Parallel process model, A-18

HTBasic Adapter
debugging, 5-12
definition, 1-4
passing data to and returning data from

subroutine, 5-12
specifying, 5-12

I
image connections, 9-11
ImageSources enumeration, 9-11
information source connections, 9-10 to 9-12

caption connections, 9-10 to 9-11
image connections, 9-11
numeric value connections, 9-12

Insert Custom Data Type submenu,
12-10 to 12-11

Insert Field context menu
customizing data types (figure), 12-13
description (table), 12-1

Insert Global context menu (table), 12-1
Insert Local context menu

available data types (figure), 12-3
location and type of item inserted

(table), 12-1
Insert Parameter context menu (table), 12-1
Insert Step submenu, 4-1 to 4-2
Insert User context menu (table), 12-1
installer for TestStand Deployment

Utility, 14-2
instance step type properties, 13-13

instrument drivers, E-1
Instrument Session Manager, IVI step

types, C-6
interactive execution, 3-5
invisible window applications, 9-26
IVI step types, C-1 to C-16

editing IVI step, C-2 to C-4
extensions, C-4
Get Information operation, C-6
IVI Dmm, C-7 to C-8
IVI Fgen, C-9 to C-10
IVI Power Supply, C-10 to C-11
IVI Scope, C-8 to C-9
IVI Switch, C-12 to C-14
IVI Tools, C-15 to C-16
operation settings, C-5
overview, C-1 to C-2
Session Manager, C-6
using soft front panels, C-6
validating configurations, C-6

K
KnowledgeBase, E-1

L
Label control

caption connections, 9-10
description (table), 9-5

Label step, 4-15
LabVIEW Adapter

creating event handlers (table), 9-15
debugging LabVIEW DLLs called with

C/C++DLL Adapter, 5-4
definition, 1-4
localization functions (table), 9-22
overview, 5-2
TestStand Utility Functions Library

(table), 9-19

Index

© National Instruments Corporation I-9 TestStand Reference Manual

updating menus (table), 9-21
using TestStand user interface

controls, 9-13
LabWindows/CVI Adapter

creating event handlers (table), 9-15
definition, 1-4
localization functions (table), 9-22
overview, 5-2
updating menus (table), 9-21
using TestStand user interface

controls, 9-13
legacy code templates, 13-7, 13-8
lifetime

See also persistence of application
settings

local variables, parameters, and custom
step properties, 3-3

synchronization step types, B-4
list connections, 9-8
ListBar control (table), 9-6
ListBar page, 9-8
ListBox control

connecting lists, 9-8
description (table), 9-6

local variables
data types (table), 12-6
definition, 1-5
lifetime during execution, 3-3
sequence local variables, 1-9 to 1-10, 2-3

localization functions by environment (table),
9-22 to 9-23

Lock step, B-5 to B-7
Lock Synchronization object, B-1
Logging property in sequence context,

6-8 to 6-9
See also database logging

Loop Options tab, Step Properties dialog
box, 4-3

loop results, 3-11

M
main Execution entry points

Batch process model, A-26
Utility sequences, A-26 to A-28

Main sequence, 1-12
Manager controls, 9-3 to 9-5

Application Manager control, 9-3 to 9-4
connecting to Visible controls, 9-7
ExecutionView Manager control,

9-4 to 9-5
SequenceFileView Manager control, 9-4

Menu tab, Step Properties dialog box, 13-4
menus and menu items for operator interfaces,

9-20 to 9-22
Menu Open notification methods by ADE

(table), 9-21
overview, 9-20
updating menus, 9-21 to 9-22

merging and comparing sequence files, 2-2
Message Popup steps, 4-15 to 4-16
MFC (Microsoft Foundation Class)

Library, 5-4
Microsoft Access

creating result tables, 6-14 to 6-15
example data link and result table setup,

6-13 to 6-14
specifying data link and schema, 6-14

Microsoft databases
ActiveX Data Objects (ADO), 6-3 to 6-4
database technologies (figure), 6-4
Object-linking and Embedding Database

(OLE DB), 6-3 to 6-4
ODBC (Open Database Connectivity),

6-3 to 6-4, 6-13
Microsoft Foundation Class (MFC)

Library, 5-4
Microsoft ODBC database technology,

6-3 to 6-4, 6-13
Microsoft Visual Basic, 5-9 to 5-11
Microsoft Visual Studio .NET, 5-6, 9-14

Index

TestStand Reference Manual I-10 ni.com

Mismatched sections, Batch Synchronization
steps, B-14 to B-15

Model callbacks
Batch process model

overriding client sequence file,
A-30 to A-31

unique to model, A-32
defining, 10-3
overriding, 10-5
overview, 1-13, 10-5
Parallel process model, A-19 to A-20
Sequential process model, A-9 to A-11

module adapters, 5-1 to 5-19
ActiveX/COM Adapter, 5-8 to 5-11

compatibility options for Visual
Basic, 5-9 to 5-11

configuring, 5-9
registering and unregistering

servers, 5-9
running and debugging servers,

5-8 to 5-9
using with TestStand, 5-9 to 5-11

available module adapters, 1-4
built-in step types

any module adapter, 4-6 to 4-13
Action steps, 4-7
Multiple Numeric Limit Test,

4-10 to 4-11
Numeric Limit Test, 4-8 to 4-10
Pass/Fail Test, 4-7 to 4-8
String Value Test, 4-11 to 4-13

module adapter not used,
4-14 to 4-18

Call Executable, 4-17
Goto, 4-15
Label, 4-15
Message Popup, 4-15 to 4-16
Property Loader, 4-18
Statement, 4-14

C/C++ DLL Adapter, 5-2 to 5-3
creating event handlers (table), 9-15
debugging LabVIEW DLLs called

with, 5-4
definition, 1-4
localization functions (table), 9-23
overview, 5-2 to 5-3
specifying, 5-3
TestStand Utility Functions Library

(table), 9-20
updating menus (table), 9-21
using TestStand user interface

controls with Visual C++, 9-14
configuring, 5-1
debugging DLLs, 5-3 to 5-5

creating type libraries, 5-5
LabVIEW DLLs called with C/C++

DLL Adapter, 5-4
loading subordinate DLLs, 5-5
options for stepping out of DLL

functions (table), 5-4
using Microsoft Foundation Class

(MFC) Library, 5-4
HTBasic Adapter

debugging, 5-12
definition, 1-4
passing data to and returning data

from subroutine, 5-12
specifying, 5-12

LabVIEW Adapter
creating event handlers (table), 9-15
debugging LabVIEW DLLs called

with C/C++DLL Adapter, 5-4
definition, 1-4
localization functions (table), 9-22
overview, 5-2
TestStand Utility Functions Library

(table), 9-19
updating menus (table), 9-21
using TestStand user interface

controls, 9-13

Index

© National Instruments Corporation I-11 TestStand Reference Manual

LabWindows/CVI Adapter
creating event handlers (table), 9-15
definition, 1-4
localization functions (table), 9-22
overview, 5-2
updating menus (table), 9-21
using TestStand user interface

controls, 9-13
.NET Adapter, 5-5 to 5-8

array parameters, 5-8
configuring, 5-7
creating event handlers (table), 9-15
debugging .NET assemblies,

5-6 to 5-7
definition, 1-4
enumeration parameters, 5-7
localization functions (table), 9-23
numeric parameters, 5-7
options for stepping out of Visual

Studio .NET (table), 5-6
struct parameters, 5-7 to 5-8
TestStand Utility Functions Library

(table), 9-19
updating menus (table), 9-21

overview, 1-4, 5-1 to 5-2
Sequence Adapter, 5-13 to 5-19

definition, 1-4
example parameters (figure), 5-13
remote sequence execution,

5-14 to 5-19
path resolution of sequence

pathnames (table), 5-14
setting up TestStand for,

5-15 to 5-19
setting up TestStand as server for

remote execution, 5-15 to 5-19
Windows 98, 5-18 to 5-19
Windows 2000/NT, 5-17 to 5-18
Windows XP, 5-16 to 5-17

specifying, 5-14 to 5-16
TestStand as server for remote

execution, 5-15 to 5-19
Windows 98, 5-18 to 5-19
Windows 2000/NT, 5-17 to 5-18
Windows XP, 5-16 to 5-17

source code templates, 5-2
types of module adapters, 1-4

Multiple Numeric Limit Test, 4-10 to 4-11
multiple window applications, 9-24 to 9-25

N
name, for Synchronization object, B-3
named data types, 1-7
National Instruments

customer education, E-1
professional services, E-1
system integration services, E-1
technical support, E-1
worldwide offices, E-1

National Instruments Switch Executive
route specification string, C-12 to C-13
Switching tab, C-12

nested interactive execution, 3-5
Nested sections, Batch Synchronization

steps, B-15
.NET Adapter, 5-5 to 5-8

configuring, 5-7
creating event handlers (table), 9-15
debugging .NET assemblies, 5-6 to 5-7
definition, 1-4
enumeration parameters, 5-7
localization functions (table), 9-23
numeric parameters, 5-7
options for stepping out of Visual Studio

.NET (table), 5-6
TestStand Utility Functions Library

(table), 9-19
updating menus (table), 9-21

Index

TestStand Reference Manual I-12 ni.com

.NET Struct Passing tab, Data Type Properties
dialog box, 12-12

NI subdirectory, 8-4
normal sequence files

definition, 2-1
process model files, 10-4

Notification step, B-10 to B-11
Numeric Limit Test step, 4-8 to 4-10

custom result properties, 3-8
Multiple Numeric Limit Test,

4-10 to 4-11
setting value of Step.Result.Numeric, 4-9
step properties defined, 4-9 to 4-10

numeric value connections, 9-12

O
object reference properties, 12-7
Object-linking and Embedding Database

(OLE DB), 6-3
ODBC (Open Database Connectivity)

database technology, 6-3 to 6-4
using data links, 6-13

OLE DB (Object-linking and Embedding
Database), 6-3

One Thread Only sections, Batch
Synchronization steps, B-14

online technical support, E-1
On-The-Fly Database Logging option, 6-12
On-The-Fly Reporting option, 6-20 to 6-21
Open Database Connectivity (ODBC)

database technology, 6-3 to 6-4
using data links, 6-13

Open Database step type, D-1 to D-2
Open SQL Statement step type, D-2 to D-3
operator interfaces

See also operator interfaces, creating
customizing, 8-1
definition, 1-2
deploying. See TestStand Deployment

Utility

overview, 1-3
startup options, 8-8 to 8-10

operator interfaces, creating, 9-1 to 9-28
See also TestStand User Interface (UI)

controls
application styles, 9-23 to 9-26

multiple window, 9-24 to 9-25
no visible window, 9-26
single window, 9-23 to 9-24

calling TestStand API directly, 9-29
changing control connections, 9-12
command connections, 9-9 to 9-10
command-line arguments, 9-26
connecting Manager controls to Visible

controls, 9-7
documentation, 9-1
event handling, 9-15 to 9-17

creating event handler (table), 9-15
DisplayExecution event, 9-17
DisplaySequenceFile event, 9-16
ExitApplication event, 9-16
ReportError event, 9-16
Wait event, 9-16

example operator interfaces, 9-2
information source connections,

9-10 to 9-12
caption connections, 9-10 to 9-11
image connections, 9-11
numeric value connections, 9-12

LabVIEW environment, 9-13
LabWindows/CVI environment, 9-13
list connections, 9-8
localization, 9-22 to 9-23
Manager controls, 9-3 to 9-5

Application Manager control,
9-3 to 9-4

connecting to Visible controls, 9-7
ExecutionView Manager control,

9-4 to 9-5
SequenceFileView Manager

control, 9-4

Index

© National Instruments Corporation I-13 TestStand Reference Manual

menus and menu items, 9-20 to 9-22
Menu Open notification methods by

ADE (table), 9-21
overview, 9-20
updating menus, 9-21 to 9-22

persistence of application settings,
9-27 to 9-28

adding custom settings, 9-27 to 9-28
configuration file location, 9-27

shutting down applications, 9-17 to 9-18
specifying control connections, 9-12
starting up applications, 9-17 to 9-18
TestStand User Interface Controls,

9-2 to 9-3
TestStand Utility Functions Library,

9-18 to 9-20
C++ (MFC) (table), 9-20
LabVIEW (table), 9-18
LabWindows/CVI (table), 9-19
.NET languages (table), 9-19

view connections, 9-7
Visible TestStand UI Controls, 9-5 to 9-6
Visual C++ environment, 9-14
Visual Studio .NET environment, 9-14

P
Parallel process model, A-15 to A-24

Configuration entry points, A-18
Execution entry points, A-16
hidden Execution entry points, A-18
Model callbacks, A-19 to A-20
overview, A-4
sequences (figure), A-15
Single Pass entry point (table), A-23
Single Pass–Test Socket entry point

(table), A-24
Test UUTs entry point (table), A-21
Test UUTs–Test Socket entry point

(table), A-22

Utility subsequences, A-20
Utility sequences, A-16 to A-18

Parallel sections, Batch Synchronization
steps, B-14

parameters
lifetime during execution, 3-3
sequences, 2-3

Pass/Fail Test step, 4-7 to 4-8
setting value of Step.Result.PassFail,

4-7 to 4-8
setting values of Step.Result.PassFail,

4-7 to 4-8
Path standard data type, 12-9
persistence of application settings,

9-27 to 9-28
See also lifetime
adding custom settings, 9-27 to 9-28
configuration file location, 9-27

phone technical support, E-1
Post Actions tab, Step Properties dialog

box, 4-3
Post-Step substep, 13-5
Pre-Step substep, 13-5
privileges for users, verifying, 7-1 to 7-2

any user, 7-2
current user, 7-1 to 7-2

process models, 10-1 to 10-5
See also Model callbacks
Batch model, A-24 to A-41

Configuration entry points, A-29
hidden Execution entry points, A-29
main Execution entry points, A-26
Model callbacks

overriding client sequence file,
A-30 to A-31

unique to model, A-32
overview, A-5
sequences (figure), A-24 to A-25
Single Pass entry point (table),

A-38 to A-39

Index

TestStand Reference Manual I-14 ni.com

Single Pass–Test Socket entry point
(table), A-4 to A-41

Test UUTs entry point (table),
A-32 to A-36

Test UUTs–Test Socket entry point
(table), A-36 to A-37

Utility sequences
hidden Execution entry

point, A-29
main Execution entry point,

A-26 to A-28
Utility subsequences, A-31

client sequence file, 1-11
Configuration entry points, A-4
customizing, 8-1
directory structure, A-6
entry points, 1-12
Execution entry points, A-3
features common to all TestStand process

models, A-3 to A-4
Main sequence, 1-11
modifying, 10-2
overview, 1-11 to 1-12
Parallel model, A-15 to A-24

Configuration entry points, A-18
Execution entry points, A-16
hidden Execution entry points, A-18
Model callbacks, A-19 to A-20
overview, A-4
sequences (figure), A-15
Single Pass entry point (table), A-23
Single Pass–Test Socket entry point

(table), A-24
Test UUTs entry point (table), A-21
Test UUTs–Test Socket entry point

(table), A-22
Utility sequences, A-16 to A-18
Utility subsequences, A-20

process flow (figure), A-2
selecting default process model, A-5

Sequential model, A-6 to A-14
Configuration entry points, A-8
definition, A-4
Execution entry points, A-8
Model callbacks, A-9 to A-11
sequences, A-6 to A-7
single Pass entry point (table), A-14
Test UUTs entry point (table),

A-12 to A-13
Utility subsequences, A-11 to A-12

special editing capabilities for sequence
files, 10-3 to 10-5

callback sequences, 10-5
entry point sequences, 10-5
normal sequences, 10-4
Sequence File Properties dialog box,

10-3 to 10-4
specifying for sequence file, 10-2
station model, 1-11, 10-2
support files

installed support files (table),
A-41 to A-43

report generation functions and
sequences (table), A-43 to A-45

TestStand process models (table), A-3
professional services and technical

support, E-1
programming examples, E-1
properties

See also variables
array property, 1-6
built-in properties

definition, 1-7
sequence properties, 1-9

built-in step type properties
class step type properties, 13-3
instance step type properties, 13-3

categories, 1-6 to 1-7
container property, 1-7

Index

© National Instruments Corporation I-15 TestStand Reference Manual

custom properties
built-in step types, 4-4 to 4-5
custom result properties, 3-7 to 3-8
definition, 1-7
lifetime of custom step properties,

3-3
definition, 1-5
property-array property, 1-7
single-valued property, 1-6
standard and custom data types, 1-7
step properties

See also Step Properties dialog box
Call Executable steps, 4-17
Label step, 4-15
lifetime of custom step

properties, 3-3
Message Popup steps, 4-16
Multiple Numeric Limit Test, 4-11
Pass/Fail Test step, 4-7 to 4-8
String Value Test step, 4-12 to 4-13

using in expressions, 1-5 to 1-6
property flags

See also Edit Flags dialog box
General tab

Data Type Properties dialog
box, 12-12

Step Properties dialog box, 13-4
reports affected by flags, 6-20

Property Loader step type, D-5 to D-10
custom properties, D-8 to D-10
loading from database, D-7
loading from file, D-6 to D-7

property-array property, definition, 1-7

Q
query, SQL, 6-2
Queue step, B-8 to B-10

R
records, in databases, 6-1
remote sequence execution. See Sequence

Adapter
Rendezvous step, B-7 to B-8
Rendezvous Synchronization object, B-1
ReportError event, 9-16
reports

ASCII format test report (figure), 6-18
Batch reports, 6-19
failure chain, 6-19
implementation of test report capability,

6-15 to 6-16
On-The-Fly Reporting option,

6-20 to 6-21
process models sequences for generating,

A-43 to A-45
header and footer (table), A-44
model callbacks (table), A-44
report body (table), A-44

property flags affecting reports, 6-20
result collection, 3-12
using test reports, 6-16 to 6-18
XML Report Schema, 6-21
XML test report (figure), 6-17

ReportView control
connecting view controls, 9-7
description (table), 9-6

resource string files. See string resource files
result collection, 3-6 to 3-12

custom result properties, 3-7 to 3-8
loop results, 3-11
overview, 1-12 to 1-13
report generation, 3-12
standard result properties, 3-9
subsequence results, 3-10 to 3-11

result tables. See database result tables
root interactive execution, 3-5
route specification string, National

Instruments Switch Executive,
C-12 to C-13

Index

TestStand Reference Manual I-16 ni.com

rows, in databases, 6-1
Run Options tab, Step Properties dialog

box, 4-3
run-time copy, created during execution, 3-1
run-time errors

built-in step type, 4-5
description, 3-16
handling interactively, 3-16

run-time operator interfaces. See TestStand
Deployment Utility

S
schema. See database result tables
Semaphore steps, B-17 to B-18
Semaphore Synchronization object, B-1
Sequence Adapter, 5-13 to 5-19

definition, 1-4
example parameters (figure), 5-13
remote sequence execution, 5-14 to 5-19

path resolution of sequence
pathnames (table), 5-14

setting up TestStand for, 5-15 to 5-19
setting up TestStand as server for remote

execution, 5-15 to 5-19
Windows 98, 5-18 to 5-19
Windows 2000/NT, 5-17 to 5-18
Windows XP, 5-16 to 5-17

specifying, 5-14
Sequence Call step, 4-13 to 4-14
sequence context, 3-2 to 3-3

lifetime of local variables, parameters,
and custom step properties, 3-3

Logging property, 6-8
purpose and use, 3-2
viewing in Sequence Editor Execution

window (figure), 3-3
sequence editor

definition, 1-1

Execution window
multiple window applications, 9-25
viewing executions, 3-3

overview, 1-2 to 1-3
startup options, 8-8 to 8-10

sequence execution. See execution
Sequence File Properties dialog box,

10-3 to 10-4
Sequence File window

accessing types (table), 11-1
Locals tab for displaying data types

(figure), 12-5
multiple window applications,

9-24 to 9-25
purpose and use (figure), 2-4
View ring control, 2-4

sequence files
callbacks, 2-2
client sequence file, 1-12
comparing and merging, 2-2
definition, 1-1
global variables, 2-2
overview, 1-10 to 1-11
processing by TestStand Deployment

Utility, 14-5
special editing capabilities for process

model sequence files, 10-3 to 10-5
callback sequences, 10-5
entry point sequences, 10-5
normal sequences, 10-4
Sequence File Properties dialog box,

10-3 to 10-4
specifying specific process model

for, 10-2
type definitions, 2-2
types of sequence files, 2-1

sequence local variables, 1-9 to 1-10
sequence parameters, 1-10
SequenceContext object, 1-5

Index

© National Instruments Corporation I-17 TestStand Reference Manual

SequenceFileView Manager control
connecting view controls, 9-7
invisible window applications, 9-26
multiple window applications, 9-24
purpose and use, 9-4
single window applications, 9-23 to 9-24

sequences, 1-9 to 1-10
built-in sequence properties, 1-10
callback sequences, 1-13, 2-2
definition, 1-1
executing directly, 3-4
Execution object, 1-14
lifetime of local variables, parameters,

and custom step properties, 3-3
local variables, 2-3
parameters, 2-3
Sequential process model, A-6 to A-7
step groups, 1-9, 2-3

SequenceView control
connecting view controls, 9-7
description (table), 9-5

Sequential process model, A-6 to A-14
Configuration entry points, A-8
definition, A-4
Execution entry points, A-8
Model callbacks, A-9 to A-11
sequences, A-6 to A-7
single Pass entry point (table), A-14
Test UUTs entry point (table),

A-12 to A-13
Utility subsequences, A-11 to A-12

Serial sections, Batch Synchronization
steps, B-14

Session Manager, IVI step types, C-6
shutting down operator interfaces,

9-17 to 9-18
Single Pass Execution entry point

Batch model, A-38 to A-39
definition, 10-1, A-3
Parallel model, A-23
Sequential model, A-14

Single Pass–Test Socket entry point
Batch model (table), A-4 to A-41
Parallel model, A-24

single window applications, 9-23 to 9-24
single-valued data types, 12-7
single-valued property, 1-6
soft front panels, IVI step types, C-6
software components of TestStand, 1-2 to 1-4

module adapters, 1-4
operator interfaces, 1-3
sequence editor, 1-2 to 1-3
TestStand Engine, 1-3
TestStand User Interface Controls, 1-3

software drivers, E-1
source code control (SCC) system, 2-5
source code templates. See code templates
Specify Module command, 4-2
SQL (Structured Query Language)

Close SQL Statement step type, D-4
Open Database step type, D-1 to D-2
SELECT command (queries), 6-2
SQL Null value, 6-2

standard named data types, 12-8 to 12-10
CommonResults, 12-9 to 12-10
Error, 12-9 to 12-10
Path, 12-9
purpose and use, 1-7, 12-8 to 12-10

standard result properties, 3-9
starting operator interfaces, 9-17
Statement steps, 4-14
station global variables, 1-5
Station Globals window (table), 11-2
station model

definition, 1-11
process model file, 10-2

StatusBar control
caption connections, 9-10
description (table), 9-5
image connections, 9-11
numeric connections, 9-12

Index

TestStand Reference Manual I-18 ni.com

step execution (table), 3-12 to 3-14
step groups, 1-9, 2-3
step properties

See also Step Properties dialog box
Call Executable steps, 4-17
Label step, 4-15
lifetime of custom step properties, 3-3
Message Popup steps, 4-16
Multiple Numeric Limit Test, 4-11
Pass/Fail Test step, 4-7 to 4-8
String Value Test step, 4-12 to 4-13

Step Properties dialog box, 4-3 to 4-4
behavior of tabs, 13-3
Code Templates tab, 13-6 to 13-9
Disable Properties tab, 13-6
Expressions tab, 4-4
General tab, 4-3, 13-4
Loop Options tab, 4-3
Menu tab, 13-4
Post Actions tab, 4-3
Run Options tab, 4-3
Substeps tab, 13-4 to 13-6
Switching tab, 4-4
Synchronization tab, 4-4
Version tab, 13-9

step result, 3-6
See also result collection

step status, 3-14 to 3-15
built-in step types, 4-5
failures, 3-15
standard values for status property

(table), 3-15
step types

See also built-in step types; database step
types; IVI step types; Synchronization
step types; types

creating and modifying custom step types,
13-1 to 13-10

See also Step Properties dialog box
customizing built-in step types,

13-2 to 13-3

displaying custom properties, 13-10
new custom step type, 13-2
overview, 13-1
properties common to all step types,

13-3 to 13-9
custom result properties, 3-7 to 3-8
customizing, 8-2, 13-10
definition, 1-8
overview, 1-8
source code templates, 1-8

Step Types tab, type Palette window,
13-1 to 13-2

STEP_RESULT table schema, 6-9
steps

definition, 1-1
lifetime of custom step properties, 3-3
overview, 1-8
properties, 1-5
status property, 3-14 to 3-15

storing types in files and memory, 11-3
string resource files, 8-6 to 8-8

default resource string files, 8-6
escape codes (table), 8-7
format, 8-7 to 8-8
search order for directories, 8-6

String Value Test step, 4-11 to 4-13
custom result properties, 3-8
setting value of Step.Result.String, 4-12
step properties defined, 4-12 to 4-13

subdirectories
NI and User subdirectories, 8-4
TestStand subdirectories (table), 8-3

subsequence, 1-1
subsequence results, 3-10 to 3-11
substep modules

definition, 13-4
source code for, 13-6

Substeps tab, Step Properties dialog box,
13-4 to 13-6

Custom substep, 13-5
Edit substep, 13-5

Index

© National Instruments Corporation I-19 TestStand Reference Manual

Post-Step substep, 13-5
Pre-Step substep, 13-5

support, technical, E-1
Switch Executive. See National Instruments

Switch Executive
Switching tab, Step Properties dialog box, 4-4
Synchronization objects, B-1 to B-2
Synchronization step types, B-1 to B-19

Batch Specification steps, B-18 to B-19
Batch Synchronization steps,

B-13 to B-16
Mismatched sections, B-14 to B-15
Nested sections, B-15
One Thread Only sections, B-14
Parallel sections, B-14
requirements for Enter and Exit

operations, B-15
Serial sections, B-14
step properties, B-15 to B-16
synchronized sections, B-13 to B-15

common attributes, B-3 to B-4
lifetime, B-4
Lock step, B-5 to B-7
name, B-3 to B-4
Notification step, B-10 to B-11
Queue step, B-8 to B-10
Rendezvous step, B-7 to B-8
Semaphore steps, B-17 to B-18
Synchronization objects, B-1 to B-2
Thread Priority step, B-16
timeout, B-4
Wait step, B-11 to B-13

retrieving results from executions
and threads, B-12

step properties, B-12 to B-13
Synchronization tab, Step Properties dialog

box, 4-4
system integration services, E-1

T
table schema. See database result tables
tables (databases), 6-1 to 6-2
technical support and professional

services, E-1
telephone technical support, E-1
templates. See code templates
terminating executions, 3-5 to 3-6
test executive engine, 1-2
test reports. See reports
Test UUTs Execution entry point

Batch model (table), A-32 to A-36
definition, 10-1, A-8
Parallel model (table), A-21
Sequential model (table), A-12 to A-13

Test UUTs–Test Socket entry point
Batch model (table), A-36 to A-37
Parallel model (table), A-22

TestStand
calling TestStand API with user interface

controls, 9-28
configuring, 8-8 to 8-10
customizing, 8-1 to 8-8
directory structure, 8-3 to 8-6

TestStand architecture overview, 1-1 to 1-14
building blocks, 1-5 to 1-14

automatic result collection,
1-12 to 1-13

callback sequences, 1-13
process models, 1-11 to 1-12
sequence executions, 1-14
sequence files, 1-10 to 1-11
sequences, 1-9 to 1-10
steps, 1-8
variables and properties, 1-5 to 1-7

general concepts, 1-1 to 1-2
software components, 1-2 to 1-4

module adapters, 1-4
operator interfaces, 1-3
sequence editor, 1-2 to 1-3

Index

TestStand Reference Manual I-20 ni.com

TestStand Engine, 1-3
TestStand User Interface

Controls, 1-3
TestStand database result tables. See database

result tables
TestStand Deployment Utility, 14-1 to 14-11

configuring and building
deployments, 14-3

distributing tests from workspace,
14-7 to 14-8

file collection, 14-3 to 14-4
guidelines, 14-5 to 14-6
identifying components for

deployment, 14-2
installer creation, 14-2
operator interface deployment, 14-10
sequence file processing, 14-5
setting up, 14-2 to 14-3
TestStand Engine, 14-6 to 14-7
TestStand system components, 14-1
VI processing, 14-4
workspace file

adding dynamically called files,
14-8 to 14-10

creating, 14-2
distributing tests from workspace,

14-7 to 14-8
overview, 2-5

TestStand Engine
deploying, 14-6 to 14-7
overview, 1-3

TestStand process models. See process models
TestStand Sequence Editor. See sequence

editor
TestStand User Interface (UI) controls,

9-10 to 9-12
calling TestStand API, 9-28
caption connections, 9-10 to 9-11
changing control connections, 9-12
command connections, 9-8

connecting manager controls to visible
controls, 9-7

image connections, 9-11
LabVIEW environment, 9-13
LabWindows/CVI environment, 9-13
list connections, 9-8
Manager controls, 9-3 to 9-5

Application Manager control,
9-3 to 9-4

connecting to Visible controls, 9-7
ExecutionView Manager control,

9-4 to 9-5
SequenceFileView Manager

control, 9-4
numeric value connections, 9-12
overview, 1-3
specifying control connections, 9-12
view connections, 9-7
Visible TestStand UI Controls, 9-5 to 9-6
Visual C++ environment, 9-14
Visual Studio .NET environment, 9-14

TestStand Utility Functions Library,
9-18 to 9-20

C++ (MFC) (table), 9-20
LabVIEW (table), 9-18
LabWindows/CVI (table), 9-19
localization functions by environment

(table), 9-22 to 9-23
.NET languages (table), 9-19

Thread Priority step, B-16
threads. See Synchronization step types
timeout, Synchronization objects, B-4
Tools menu, customizing, 8-2
training, customer, E-1
troubleshooting resources, E-1
type definitions, sequence files, 2-2
Type Palette window

accessing types (table), 11-2
purpose and use, 11-3 to 11-4
Step Types tab (figure), 13-2

Index

© National Instruments Corporation I-21 TestStand Reference Manual

types
See also built-in step types; data types;

step types
creating and modifying, 11-1 to 11-2
storing in files and memory, 11-3
windows and views that display types

(table)
Sequence File window, 11-1
Station Globals window, 11-2
Type Palette window, 11-2
User Manager window, 11-2

U
unit under test (UUT), 1-2
User Manager

overview, 7-1
verifying user privileges, 7-1 to 7-2

any user, 7-2
current user, 7-1 to 7-2

User Manager window (table), 11-2
User subdirectory, 8-4
Utility sequences

Batch model
hidden Execution entry point, A-29
main Execution entry point,

A-26 to A-28
Parallel model, A-16 to A-18

Utility subsequences
Batch process model, A-31
Parallel process model, A-20
Sequential process model, A-11 to A-12

UUT_RESULT table schema, 6-9

V
variables

See also properties
definition, 1-5

global
definition, 1-5
sequence files, 2-2

local
data types (table), 12-6
definition, 1-5
lifetime during execution, 3-3
sequence local variables,

1-9 to 1-10, 2-3
overview, 1-5
standard and custom named data

types, 1-7
station global variables, 1-5
using in expressions, 1-5 to 1-6

verifying user privileges, 7-1 to 7-2
any user, 7-2
current user, 7-1 to 7-2

Version tab
Data Type Properties dialog box, 12-12
Step Properties dialog box, 13-9

VI processing, TestStand Deployment
Utility, 14-4

View Contents command, 13-10
Visible TestStand UI controls

connecting to Manager controls, 9-7
description of controls (table), 9-5 to 9-6

Visual Basic, 5-9 to 5-11
Visual C++, 9-14
Visual Studio .NET, 5-6, 9-14

W
Wait event, 9-16
Wait step, B-11 to B-13

retrieving results from executions and
threads, B-12

step properties, B-12 to B-13

Index

TestStand Reference Manual I-22 ni.com

Web
professional services, E-1
technical support, E-1

Windows 98, setting up for remote execution,
5-18 to 5-19

Windows 2000/NT, setting up for remote
execution, 5-17 to 5-18

windows in operator interfaces
multiple window, 9-24 to 9-25
no visible window, 9-26
single window, 9-23 to 9-24

Windows XP, setting up for remote execution,
5-16 to 5-17

workspaces
overview, 2-5
source code control, 2-5

TestStand Deployment Utility
adding dynamically called files,

14-8 to 14-10
creating, 14-2
distributing tests from workspace,

14-7 to 14-8
overview, 2-5

worldwide technical support, E-1

X
XML Report Schema, 6-21

	TestStand Reference Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions

	Chapter 1 TestStand Architecture
	General Test Executive Concepts
	Major Software Components of TestStand
	TestStand Sequence Editor
	TestStand Operator Interfaces
	TestStand User Interface Controls
	TestStand Engine
	Module Adapters

	TestStand Building Blocks
	Variables and Properties
	Expressions
	Categories of Properties

	Steps
	Step Types

	Sequences
	Step Groups
	Sequence Local Variables
	Sequence Parameters
	Built-in Sequence Properties

	Sequence Files
	Process Models
	Station Model
	Main Sequence and Client Sequence File
	Entry Points

	Automatic Result Collection
	Callback Sequences
	Table 1-1. Callback Types

	Sequence Executions

	Chapter 2 Sequence Files and Workspaces
	Sequence Files
	Types of Sequence Files
	Sequence File Callbacks
	Sequence File Globals
	Sequence File Type Definitions
	Comparing and Merging Sequence Files

	Sequences
	Step Groups
	Parameters
	Local Variables

	Sequence File Window and Views
	Figure 2-1. Sequence File Window

	Workspaces
	Source Code Control
	System Deployment

	Chapter 3 Executions
	What is an Execution?
	Sequence Context
	Using the Sequence Context
	Lifetime of Local Variables, Parameters, and Custom Step Properties

	Sequence Editor Execution Window
	Figure 3-1. Sequence Editor Execution Window

	Starting an Execution
	Execution Entry Points
	Executing a Sequence Directly
	Interactively Executing Steps
	Terminating and Aborting Executions

	Result Collection
	Custom Result Properties
	Table 3-1. Custom Properties in the Step Results for Steps that Use the Built-In Step Types

	Standard Result Properties
	Table 3-2. Standard Step Result Properties

	Subsequence Results
	Table 3-3. Property Names for Subsequence Results

	Loop Results
	Report Generation

	Engine Callbacks
	Step Execution
	Table 3-4. Order of Actions that a Step Performs

	Step Status
	Table 3-5. Standard Values for the Status Property
	Failures

	Run-Time Errors

	Chapter 4 Built-In Step Types
	Overview
	Using Step Types
	Figure 4-1. Insert Step Submenu
	Built-In Step Properties

	Custom Properties That Are Common to All Built-In Step Types
	Step Status, Error Occurred Flag, and Run-Time Errors

	Step Types That You Can Use with Any Module Adapter
	Action
	Pass/Fail Test
	Numeric Limit Test
	Multiple Numeric Limit Test
	String Value Test

	Step Types That Work With a Specific Module Adapter
	Sequence Call

	Step Types That Do Not Use Module Adapters
	Statement
	Label
	Goto
	Message Popup
	Call Executable
	Property Loader

	Chapter 5 Module Adapters
	Overview
	Configuring Adapters
	Source Code Templates

	LabVIEW Adapter
	LabWindows/CVI Adapter
	C/C++ DLL Adapter
	Specifying a C/C++ DLL Adapter Module

	Debugging DLLs
	Table 5-1. Options for Stepping Out of DLL Functions
	Debugging LabVIEW DLLs You Call with the C/C++ DLL Adapter
	Using MFC in a DLL
	Loading Subordinate DLLs
	Creating Type Libraries

	.NET Adapter
	Debugging .NET Assemblies
	Table 5-2. Options for Stepping Out of Assemblies in Microsoft Visual Studio .NET

	Configuring the .NET Adapter
	Numeric Parameters
	Enumeration Parameters
	Struct Parameters
	Array Parameters

	ActiveX/COM Adapter
	Running and Debugging ActiveX Automation Servers
	Configuring the ActiveX/COM Adapter
	Using ActiveX/COM Servers with TestStand
	Registering and Unregistering a Server
	Compatibility Options for Visual Basic

	HTBasic Adapter
	Specifying an HTBasic Adapter Module
	Debugging an HTBasic Adapter Module
	Passing Data To and Returning Data From a Subroutine

	Sequence Adapter
	Figure 5-1. Example Sequence Parameters
	Specifying a Sequence Adapter Module
	Remote Sequence Execution
	Table 5-3. Path Resolution of Sequence Pathnames for Remotely Executed Steps

	Setting up TestStand as a Server for Remote Execution
	Windows XP
	Windows 2000/NT
	Windows 98

	Chapter 6 Database Logging and Report Generation
	Database Concepts
	Databases and Tables
	Table 6-1. Example Database Table

	Database Sessions
	Microsoft ADO, OLE DB, and ODBC Database Technologies
	Figure 6-1. Microsoft Windows Database Technologies

	Data Links
	Database Logging Implementation

	Using Database Logging
	Logging Property in the Sequence Context

	TestStand Database Result Tables
	Default TestStand Table Schema
	Creating the Default Result Tables
	Adding Support for Other Database Management Systems
	Database Viewer
	On-The-Fly Database Logging

	Using Data Links
	Using the ODBC Administrator
	Example Data Link and Result Table Setup for Microsoft Access
	Database Options-Specifying a Data Link and Schema
	Database Viewer-Creating Result Tables

	Implementation of the Test Report Capability
	Using Test Reports
	Figure 6-2. XML or HTML Test Report on the Report Tab
	Figure 6-3. ASCII-Text Test Report on the Report Tab
	Failure Chain in Reports
	Batch Reports
	Figure 6-4. Example Batch Report

	Property Flags that Affect Reports
	On-The-Fly Report Generation
	XML Report Schema

	Chapter 7 User Management
	Verifying User Privileges
	Accessing Privilege Settings for the Current User
	Accessing Privilege Settings for Any User

	Chapter 8 Customizing and Configuring TestStand
	Customizing TestStand
	Operator Interfaces
	Process Models
	Callbacks
	Data Types
	Step Types
	Tools Menu
	TestStand Directory Structure
	Table 8-1. TestStand Subdirectories
	NI and User Subdirectories
	The Components Directory
	Table 8-2. TestStand Component Subdirectories

	Creating String Resource Files
	Resource String File Format
	Table 8-3. Resource String File Escape Codes

	Configuring TestStand
	Sequence Editor and Operator Interface Startup Options
	Table 8-4. Sequence Editor or Operator Interface Startup Options

	Configure Menu

	Chapter 9 Creating Custom Operator Interfaces
	Example Operator Interfaces
	TestStand User Interface Controls
	Deploying an Operator Interface
	Writing an Application with the TestStand UI Controls
	Manager Controls
	Application Manager
	SequenceFileView Manager
	ExecutionView Manager

	Visible TestStand UI Controls
	Table 9-1. Visible TestStand UI Controls

	Connecting Manager Controls to Visible Controls
	View Connections
	List Connections
	Table 9-2. Available List Connections

	Command Connections
	Information Source Connections
	Caption Connections
	Image Connections
	Numeric Value Connections

	Specifying and Changing Control Connections

	Using TestStand UI Controls in Different Environments
	LabVIEW
	LabWindows/CVI
	Visual Studio .NET
	Visual C++

	Handling Events
	Creating Event Handlers In Your ADE
	Table 9-3. Creating an Event Handler in Your ADE

	Events Handled By Typical Applications
	ExitApplication
	Wait
	ReportError
	DisplaySequenceFile
	DisplayExecution

	Startup and Shut Down
	TestStand Utility Functions Library
	Table 9-4. Using the TSUtil Library in LabVIEW
	Table 9-5. Using the TSUtil Library in LabWindows/CVI
	Table 9-6. Using the TSUtil Library in .NET Languages
	Table 9-7. Using the TSUtil Library in C++ (MFC)

	Menus and Menu Items
	Updating Menus
	Table 9-8. Menu Open Notification Methods by ADE

	Localization
	Table 9-9. TSUtil Library Localization Functions by Environment

	Operator Interface Application Styles
	Single Window
	Multiple Window
	No Visible Window

	Command-Line Arguments
	Persistence of Application Settings
	Configuration File Location
	Adding Custom Application Settings

	Using the TestStand API With TestStand UI Controls

	Chapter 10 Customizing Process Models and Callbacks
	Process Models
	Station Model
	Specifying a Specific Process Model for a Sequence File
	Modifying the Process Model
	Process Model Callbacks
	Special Editing Capabilities for Process Model Sequence Files
	Figure 10-1. Sequence File Type Setting on the Advanced tab on the Sequence File Properties Dialog Box

	Callbacks
	Engine Callbacks
	Table 10-1. Engine Callbacks

	Front-End Callbacks

	Chapter 11 Type Concepts
	Creating and Modifying Types
	Where You Create and Modify Types
	Table 11-1. GUIs for Accessing Data Types and Step Types

	Storing Types in Files and Memory
	Type Palette Window

	Chapter 12 Standard and Custom Data Types
	Using Data Types
	Table 12-1. Creating Data Type Instances from Context Menus
	Figure 12-1. Insert Local Submenu
	Specifying Array Sizes
	Figure 12-2. Array Bounds Dialog Box
	Empty Arrays
	Figure 12-3. Array Bounds Dialog Box with an Initially Empty Array

	Display of Data Types
	Figure 12-4. Local Variables with Various Data Types
	Table 12-2. Data Types of the Local Variables

	Modifying Data Types and Values
	Single Values
	Arrays

	Using the Standard Named Data Types
	Figure 12-5. Standard Data Types Tab in the Type Palette Window
	Path
	Error and Common Results

	Creating and Modifying Custom Data Types
	Creating a New Custom Data Type
	Figure 12-6. Insert Custom Data Type Submenu

	Customizing Built-In Data Types
	Properties Common to All Data Types
	General Tab
	Bounds Tab
	Version Tab
	Cluster Passing Tab
	C/C++ Struct Passing Tab
	.NET Struct Passing Tab

	Custom Properties of Data Types
	Figure 12-7. Insert Field Submenu

	Chapter 13 Creating Custom Step Types
	Creating and Modifying Custom Step Types
	Figure 13-1. Step Types Tab in the Type Palette Window
	Creating a New Custom Step Type
	Customizing Built-In Step Types
	Properties Common to All Step Types
	General Tab
	Menu Tab
	Substeps Tab
	Disable Properties Tab
	Code Templates Tab
	Table 13-1. Locations of Default Code Templates
	Version Tab

	Custom Properties of Step Types
	Figure 13-2. Custom Properties of a Step Type

	Chapter 14 Deploying TestStand Systems
	TestStand System Components
	TestStand Deployment Utility
	Setting Up the TestStand Deployment Utility
	Identifying Components for Deployment
	Determining Whether to Create an Installer With the TestStand Deployment Utility
	Creating a System Workspace File
	Configuring and Building the Deployment

	Using the TestStand Deployment Utility
	File Collection
	VI Processing
	Sequence File Processing

	Guidelines for Successful Deployment
	Common Deployment Scenarios
	Deploying the TestStand Engine
	Distributing Tests From a Workspace
	Adding Dynamically Called Files to a Workspace
	Distributing an Operator Interface

	Appendix A Process Model Architecture
	Figure A-1. Process Flow
	Table A-1. TestStand Process Models
	Figure A-2. Sequences in the Sequential Process Model
	Table A-2. Order of Actions the Sequential Process Model Test UUTs Entry Point Performs
	Table A-3. Order of Actions the Sequential Process Model Single Pass Entry Point Performs
	Figure A-3. Sequences in the Parallel Process Model
	Table A-4. Order of Actions the Parallel Process Model Test UUTs Entry Point Performs
	Table A-5. Order of Actions the Parallel Process Model Test UUTs - Test Socket Entry Point Performs
	Table A-6. Order of Actions the Parallel Process Model Single Pass Entry Point Performs
	Table A-7. Order of Actions the Parallel Process Model Single Pass - Test Socket Entry Point Performs
	Figure A-4. Sequences in the Batch Process Model
	Table A-8. Order of Actions the Batch Process Model Test UUTs Entry Point Performs
	Table A-9. Order of Actions the Batch Process Model Test UUTs - Test Socket Entry Point Performs
	Table A-10. Order of Actions the Batch Process Model Single Pass Entry Point Performs
	Table A-11. Order of Actions the Batch Process Model Single Pass - Test Socket Entry Point Performs
	Table A-12. Installed Support Files for the Process Model Files
	Table A-13. Sequences that Generate the Report Header and Footer
	Table A-14. Sequences or C Functions that Generate the Report Body
	Table A-15. Report Generation Model Callbacks

	Appendix B Synchronization Step Types
	Appendix C IVI Step Types
	Figure C-1. IVI Dmm Step Configure Operation
	Figure C-2. IVI Dmm Extensions Tab
	Figure C-3. IVI Dmm Operation Settings Tab

	Appendix D Database Step Types
	Table D-1. Example Data for Property Loader Step

	Appendix E Technical Support and Professional Services
	Glossary
	A
	B-C
	D
	E
	F-G
	H-K
	L-M
	N
	O-P
	R
	S
	T-U
	V-W

	Index
	A-B
	C
	D
	E
	F-G
	H-L
	M
	N
	O
	P
	Q-R
	S
	T
	U-W
	X

